

ALTIS PROPERTY PARTNERS PTY LTD

Detailed Site Investigation

28 Elizabeth Street, Liverpool

E24175.E02_Rev0 8 December 2020

Document Control

Report Title:	Detailed Site Investigation
---------------	-----------------------------

Report No: E24175.E02_Rev0

Сс	opies	Recipient
1	Soft Copy (PDF – Secured, issued by email)	Altis Property Partners Pty Ltd 28 Elizabeth Street, Liverpool NSW 2010
2	Original (Saved to Digital Archives)	El Australia Pty Ltd Suite 6.01, 55 Miller Street, Pyrmont NSW 2009

Author

Report Reviewer

Shili

& Brichle

SHARON LI Environmental/Geotechnical Engineer		GREG BRICKLE Principal Environmental S	GREG BRICKLE Principal Environmental Scientist	
Revision	Details	Date	Amended By	
0	Original	8 December 2020	-	

© 2020 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

EXECUTIVE SUMMARY

Altis Property Partners Pty Ltd ('the Client') engaged El Australia (El) to complete a Detailed Site Investigation (DSI) of the land parcel located at 28 Elizabeth Street, Liverpool NSW ('the Site').

The site is located within the Local Government Area (LGA) of Liverpool City Council (Council), as shown in **Figure 1** (**Appendix A**), and covers a total area of 3,500 m² (**Figure 2**, **Appendix A**). The site is further identified as Lot 1 in DP 1261270. At the time of this assessment the Site was vacant and all structures had been demolished. The Site was covered by slab on ground while the southern end of the Site was unpaved and overgrown with grass and weeds.

Based on the information provided by the client, the Site is to be redeveloped into a multistorey mixed used building over four levels of basement. No development plans were provided to EI at the time of reporting. A summary of the previous investigation is provided in **Section 3.** A DSI is required to demonstrate the suitability of the Site for the proposed redevelopment.

Key Findings

- The Site was previously used as a service station and a car park. All surface features had previously been demolished and removed from the site;
- The site and neighbouring properties were free of statutory notices and licensing agreements issued under the Contaminated Land Management Act 1997 and List of NSW Contaminated Sites Notified to the EPA. The site was not included on the Protection of the Environment Operations Act 1997;
- The site was partially paved at grade (ground level) with concrete hardstand, and unpaved areas were overgrown with weeds and grass;
- Some surface oil staining was observed within the western area of the Site;
- No asbestos containing material (ACM) was observed on the surface across the site. However, fragments of potential ACM and damaged Telstra pits were observed in a previous inspection (2 April 2019);
- Four underground storage tanks (USTs) were located in situ by ground penetrating radar (GPR) survey at the northern area of the site near Elizabeth Street. Field inspection also identified UST fill points and bowser footings. One UST was located in the centre of the site near footprint of the former building. This indicates that infrastructure associated with an underground petroleum storage system (UPSS) remains in place at the site;
- A total of 12 subsurface assessment locations (BH201 to BH212) were drilled and soil samples were collected. Monitoring wells were installed in three of these locations (BH201M, BH202M and BH205M).
- The sub-surface comprised a layer of silty clay and sandy clay fill to 1.0m below ground level (BGL), overlying natural residual clays, then weathered shale bedrock. Sand fill, to a depth of 3.5m BGL, was identified at BH202M located near the UST area;
- Standing water levels of groundwater ranged between 2.97 and 3.76 m BGL;
- Hydrocarbon odour was identified in sand fill at location BH202M near the UST area
- Soil investigation levels applicable to a proposed land use equivalent to a setting of residential with minimal opportunities for soil access were adopted for the site investigation.
- Laboratory analytical results for the representative soil samples all complied with the adopted SILs except for:

- The heavy metals nickel (87 mg/kg) in sample BH209_0.2-0.3 and zinc (250 mg/kg) in sample BH203_0.1-0.2, which were above ecological based criteria; and
- Asbestos was detected in shallow fill in samples BH207_0.2-0.3, BH209_0.2-0.3 and BH201_0.2-0.3.
- Laboratory analytical results for the groundwater samples all complied with the adopted groundwater investigation levels (GILs), except for:
 - → Chromium in BH202M (120 µg/L);
 - Copper in BH201M (120 µg/L);
 - Nickel in BH205M (13 μg/L); and
 - Zinc in BH201M (17 μg/L), BH202M (51 μg/L), and BH205M (63 μg/L).
- Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) were either nondetected or reported at low concentration in soil and groundwater at the site. This indicates that impact to soil and groundwater from previous use as a service station has been negligible.

The primary sources for elevated concentrations of heavy metals in groundwater at the site are currently unknown. It is expected that the reported concentrations in groundwater are likely to be indicative of regional groundwater quality.

Based on the findings from this soil and groundwater field investigation which was conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 11**), El conclude that widespread contamination was not identified on the Site.

In view of the proposed development scope, and currently available information, EI consider that the Site can be made suitable for proposed land use equivalent to a setting of residential with minimal opportunities for soil access, provided the recommendations below are implemented:

- Preparation and implementation of a Remedial Action Plan (RAP), which should:
 - Provide a sampling and quality plan (SAQP) for assessment and validation of remediation activities to be performed on-site.
 - Complete one round of groundwater monitoring at existing wells to confirm the concentration of metals, particularly chromium.
 - Assess the lateral extent of asbestos impact reported in shallow fill at locations BH207, BH209 and BH210, and at the previously identified Telstra pits after removal of the concrete slab and services across the Site.
 - Allow for the removal and offsite disposal of all UPSS, associated infrastructure and hydrocarbon impacted soils according to EPA (2014) Technical Note: Investigation of Service Station Sites;
 - Provide requirements for validation sampling following remediation of the UPSS area, surface oil staining area, and asbestos impacted areas identified at the site;
 - Provide an unexpected finds protocol;
 - Provide the requirements and procedures for waste classification assessment including further sampling, in order to enable classification of soils to be excavated and disposed

off-site during the proposed basement excavation, in accordance with the EPA (2014) *Waste Classification Guidelines*.

- Undertake remediation and validation works for the site, as outlined in the RAP.
- Any material being imported to the Site (i.e. for landscaping or levelling purposes) should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM; and
- Preparation of a final Site Validation Report certifying Site suitability of soils and groundwater for the proposed land use.

TABLE OF CONTENTS

Page Number

EX	ECUI	TIVE SU	IMMARY	111
1.	INTI	RODUC	TION	1
	1.1	Backgr	round and Purpose	1
	1.2	Regula	atory Framework	1
	1.3	Project	t Objectives	1
	1.4	Scope	of Works	2
2.	SIT	E DESC	RIPTION	3
	2.1	Proper	ty Identification, Location and Physical Setting	3
	2.2	Surrou	nding Land Use	3
	2.3	Regior	nal Setting	4
	2.4	EPA O	Inline Records	4
	2.5	Site W	alkover Inspection	5
3.	PRE	EVIOUS	INVESTIGATION	6
4.	CON	NCEPTU	JAL SITE MODEL	7
	4.1	Summa	ary of Site History	7
	4.2	Potenti	ial Contamination Sources	7
	4.3	Contar	ninants of Potential Concern	9
	4.4	Exposi	ure Pathways, Receptors and Linkages	9
5.	MET	THODO	LOGY	10
	5.1	Sampli	ing, Analytical and Quality Plan	10
	5.2	Data Q	Quality Objectives	10
	5.3	Data Q	Quality Indicators	13
	5.4	Sampli	ing Rationale	14
	5.5	Investi	gation Constraints	14
	5.6	Assess	sment Criteria	14
	5.7	Soil Sa	ampling	16
	5.8	Ground	dwater Investigation	17
6.	DAT	TA QUA	LITY ASSESSMENT	19
7.	RES	SULTS		21
	7.1	Field Ir	nspection	21
	7.2	Soil Inv	vestigation Results	21
		7.2.1	Subsurface Conditions	21
		7.2.2	Field Observations and PID Results	21
	7.3	Ground	dwater Investigation Results	22
		7.3.1	Monitoring Well Construction	22
		7.3.2	Field Observations and Water Test Results	22

	7.4	Laboratory Analytical Results	23
		7.4.1 Soil Analytical Results	23
		7.4.2 Groundwater Analytical Results	24
8.	SITE	E CHARACTERISATION	26
	8.1	Review of Conceptual Site Model	26
	8.2	Soil Characterisation	26
	8.3	Groundwater Characterisation	26
9.	CON	NCLUSION	28
10.	REC	COMMENDATIONS	30
11.	STA	TEMENT OF LIMITATIONS	31
RE	FERE	ENCES	32
AB	BREV	VIATIONS	34
	H1	Quality Assurance / Quality Control Program	11
	H2	Field QA/QC	14
	H3	Laboratory QA/QC	16
	H4	Summary of Project QA/QC	17

Schedule of Tables

Table 2-1	Site Identification	3
Table 2-2	Surrounding Land Uses	3
Table 2-3	Regional Setting	4
Table 3-1	Summary of Previous Investigation	6
Table 4-1	PFAS Decision Tree	8
Table 4-2	Emerging or Controlled Chemicals	8
Table 4-3	Conceptual Site Model	9
Table 5-1	Summary of Project Data Quality Objectives	11
Table 5-2	Data Quality Indicators	13
Table 5-3	Adopted Investigation Levels for Soil and Groundwater	14
Table 5-4	Summary of Soil Sampling Methodology	16
Table 5-5	Summary of Groundwater Investigation Methodology	17
Table 6-1	Quality Assurance Process	19
Table 7-1	Generalised Subsurface Profile	21
Table 7-2	Monitoring Well Construction Details	22
Table 7-3	Groundwater Field Data	22
Table 7-4	Summary of Soil Analytical Results	23
Table 7-5	Summary of Groundwater Analytical Results	24

Appendices

APPENDIX A - FIGURES

APPENDIX B - TABLES

APPENDIX C – SITE PHOTOGRAPHS

APPENDIX D – BOREHOLE LOGS

APPENDIX E – CALIBRATION FORM, FIELD DATA SHEETS AND GPR SURVEY LETTER

APPENDIX F – CHAIN OF CUSTODY AND SAMPLE RECEIPT DOCUMENTATION

APPENDIX G – LABORATORY ANALYTICAL REPORTS

APPENDIX H – QA/QC ASSESSMENT

APPENDIX I – LABORATORY QA/QC AND DQOS

1. INTRODUCTION

1.1 Background and Purpose

At the request of Altis Property Partners Pty Ltd ("the Client") was engaged to assist with a soil and groundwater assessment for the site located at 28 Elizabeth Street, Liverpool NSW ("the Site"). The site is legally identified as Lot 1 in DP 1261270 and located within the Local Government Authority of Liverpool City Council (**Figure 1**, **Appendix A**). The site, covers an area of approximately 3,500 m² (**Figure 2**, **Appendix A**).

Based on the information provided by the client, the Site is to be redeveloped into a multistorey mixed used building over four levels of basement. No development plans were provided to EI at the time of reporting.

At the time of this assessment the Site was vacant and all structures had been demolished. The Site was covered by slab on ground while the southern end of the Site was unpaved and overgrown with grass and weeds.

This report follows on from previous investigations completed at the Site by EI Australia, referenced as follows:

- EI (2019a), "Geotechnical Investigation Report, 28 Elizabeth Street, Liverpool, NSW", (El report Ref. E24175.G03, 22 May 2019); and
- EI (2019b), "*Preliminary Site Investigation, 28 Elizabeth Street, Liverpool, NSW*", (EI report Ref. E24175.E01, 29 April 2019).

1.2 Regulatory Framework

The following regulatory framework and guidelines were considered during this DSI:

- Contaminated Land Management Act 1997;
- Protection of the Environment Operations Act 1997;
- Environmental Planning and Assessment Act 1979; in particular
- State Environmental Planning Policy 55 Remediation of Land (SEPP 55);
- Liverpool Local Environmental Plan 2008;
- EPA (1995) Sampling Design Guidelines;
- EPA (2014) Waste Classification Guidelines;
- EPA (2017) Guidelines for the NSW Site Auditor Scheme;
- EPA (2020) Consultants Reporting on Contaminated Land;
- NEPC (2013) Schedule B (1) Guideline on Investigation Levels for Soil and Groundwater,
- NEPC (2013) Schedule B (2) Guideline on Site Characterisation.

1.3 Project Objectives

The objectives of this investigation were to:

 Establish the degree of any site contamination, by means of intrusive sampling and laboratory analysis for the contaminants of potential concern (COPC);

- Provide conclusions regarding suitability of the site for the proposed development; and
- Make recommendations for the appropriate management of any contaminated soils and/or groundwater (if identified).

1.4 Scope of Works

To achieve the above objectives, the following scope of works was completed:

Desktop Study

- Review of relevant (hydro)geological and soil landscape maps for the project area;
- Searches of public registers maintained by the NSW Environment Protection Authority (EPA) for statutory notices and licensing agreements issued under the *Contaminated Land Management Act 1997* and *Protection of the Environment Operations Act 1997*;
- A search of the List of NSW Contaminated Sites Notified to the EPA;
- A site walkover inspection; which included
 - A review of existing underground services on-site, completed with assistance from Dial-Before-U-Dig (DBYD) plans and electro-magnetic equipment; and
 - GPR Scanning to identify the location of the existing Underground Storage Tanks (USTs).
- A review of the previous environmental reports.

Fieldwork and Laboratory Analysis

- Construction of test boreholes at 12 locations (which is in accordance with the EPA [1995] Sampling Design Guidelines) using a auger drill distributed in a triangular grid pattern across accessible areas of the site;
- Construction of 3 groundwater monitoring bores drilled to a maximum depth of 9m (or refusal) both up gradient and downgradient of the proposed redevelopment area. Groundwater monitoring bores were constructed to standard environmental protocols to investigate the potential for groundwater contamination, and migration of contaminants offsite;
- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the three newly constructed groundwater monitoring bores; and
- Laboratory analysis of selected soil samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation program.

Data Analysis and Reporting

This report documents all desk study findings, the conceptual site model, data quality objectives, investigation methodologies and results. It also provides a record of observations made during the site walkover inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

SITE DESCRIPTION 2.

2.1 Property Identification, Location and Physical Setting

The site identification details and associated information are presented in Table 2-1, while site locality and assessment area are illustrated in Appendix A, Figures 1 and 2.

ntification
Description
28 Elizabeth Street, Liverpool NSW
Northern corner of the site (datum GDA94-MGA56):
Easting: 308226.013
Northing: 6244722.098
(Source: https://maps.six.nsw.gov.au)
3,500 m ²
1 in DP1261270
Liverpool City Council
St Luke
Cumberland
B4 – Mixed Use
(Liverpool Local Environmental Plan 2008)

Table 2-1 Site Identification

2.2 Surrounding Land Use

The site is situated in a predominantly commercial area, as described in Table 2-2. The local sensitive receptors within close proximity to the site are also identified in this table.

Direction	Land Use Description	Sensitive Receptors
North	Elizabeth Street followed by a church	Notable areas of land surrounding the site were:
East	Vacant lot	 Bigge Park (130m east to the site); Georges River (400m south-east to the site)
South	Unnamed lane followed by Liverpool Police Station	 Residential properties; Commercial land users; Development and maintenance workers;
West	George Street followed by commercial properties	 Development and maintenance workers, Sumer Child Care (300m south west to the site)

Table 2-2 Surrounding Land Uses

2.3 Regional Setting

The topography, (hydro)geology and soil landscape information is summarised in Table 2-3.

Table	2-3	Regional	Setting

Attribute	Description
Topography	The regional topography consists of gently undulating plains to rolling rises with slopes usually <5%. The site was observed to slope downwards from west to east at approximately 5°.
Site Drainage	Site drainage is likely to be consistent with the general slope of the site. Stormwater is likely to be collected by pit and pipe drainage, and drain to the municipal stormwater and then to Georges River.
Regional Geology	With reference to the 1:100 000 scale Geological Series Sheet 9030 (Penrith) the site is likely to be underlain by Bringelly Shale, a formation of the Wianamatta Group. Bringelly Shale typically comprises <i>shale, carbonaceous claystone, claystone, laminite, fine-medium grained lithic sandstone, rare coal and tuff.</i>
Soil Landscape	The Soil Conservation Service of NSW Soil Landscapes of the Penrith 1:100,000 Sheet (Chapman and Murphy, 2002) indicates that the site overlies a <i>Residual</i> <i>landscape – Blacktown.</i> Soils are identified as shallow to moderately deep (>100 cm) hard setting mottled texture contrast soils, red and brown Podzolic soils on crests grading to yellow Podzolic soils on lower slopes and in drainage lines (Ref: Chapman and Murphy, 2002).
Acid Sulfate Soil (ASS) Risk	The Liverpool Local Environmental Plan 2008 Acid Sulfate Soils Map (Sheet ASS_011 shows the site to be within areas mapped as <i>Class 5</i> Acid Sulfate Soils (ASS). Class 5 areas are likely to locate ASS during works within 500 metres of adjacent Class 1, 2, 3, or 4 land which are likely to lower the water table below 1 metre AHD on adjacent Class 1, 2, 3 or 4 land. Visual indicators of actual and potential ASS were not observed during previous geotechnical field investigations (2019a). As such, El consider that it is unlikely for ASS to be present on site and the need for an ASS management plan was unwarranted.
Nearest Surface Water Feature	Georges River (400m southeast).
Groundwater Flow Direction	Groundwater flow is anticipated to be southeast towards Georges River.

2.4 EPA Online Records

On 27 November 2020, an on-line search of the contaminated land public record maintained by the EPA was conducted. This search confirmed that the EPA had no regulatory involvement (i.e. notices) in relation to the area of investigation, nor for any properties in its proximity (<500m radius). The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the Contaminated Land Management Act 1997 (CLM Act);
- Approved voluntary management proposals under the CLM Act that have not been fully carried out and where the approval of the EPA has not been revoked;
- Site Audit Statements provided to the EPA under Section 53B of the CLM Act that relate to significantly contaminated land;

- Where practicable, copies of any documentation formerly required to be part of the public record; and
- Actions taken by the EPA under Sections 35 and 36 of the *Environmentally Hazardous Chemicals Act 1985*.

A search through the *List of NSW Contaminated Sites Notified to the EPA* under Section 60 of the CLM Act 1997 was also conducted on 27 November 2020. This list includes properties on which contamination has been identified, but is not deemed to be impacted significantly enough to warrant regulation. The site was not listed, nor for any properties in its proximity (<500m radius).

A search of the *Protection of the Environment Operations (POEO) Act 1997* public register for environmental protection licences, applications, notices, audits, pollution studies and reduction programmes, was conducted on 27 November 2020. The site was not listed; however, one site was found within a 500m proximity to the site:

 Healthscope Operations Pty Ltd (Trading as: Lady Davidson Private Hospital) 40 Bigge St, LIVERPOOL, NSW 2170 (notice number 12839) was notified to EPA as POEO Public Register (460m north-east to the site). El consider this is not a cause for concern because the licence of the notified site is no longer in force, further the regional geology (clay and shale) would likely limit the migration of potential contamination.

2.5 Site Walkover Inspection

Observations were recorded during a walkover inspection of the site conducted on 9 November 2020. These are summarised below. The general site layout is shown on **Figure 2**. Refer also to photographs attached in **Appendix C**.

- Site topography was relatively flat with a minor slope to the south along George Street with Elizabeth street sloping to the east;
- Four USTs were located by GPR survey in the north part of the site the near along Elizabeth Street;
- One waste oil UST was located by GPR in the central portion of site;
- The Site was previously used as a service station and a car park that was partially paved at grade (ground level). Unpaved areas were overgrown with weeds and grass;
- Hydrocarbon odour was identified within one location near the Underground Petroleum Storage System (UPSS) and some oil staining was also observed within the western area of the Site; and
- No ACM was observed at the surface across the Site.
 - Note: Fragments of potential ACM were observed during a previous site inspection (in the central southern portion and north eastern corner of site) this was considered to be associated with two damaged Telstra pits along the eastern boundary of site observed at that time

PREVIOUS INVESTIGATION 3.

The following environmental report was reviewed as part of this investigation:

EI (2019b), "Preliminary Site Investigation, 28 Elizabeth Street, Liverpool, NSW', (EI report • Ref. E24175.E01, 29 April 2019).

A summary of this report is provided in Table 3-1.

Table 3-1 Su	Table 3-1 Summary of Previous Investigation		
Task	Findings		
El (2019b) Preli	minary Site Investigation		
Objective	To provide a qualitative assessment of the environmental conditions of the site by appraising the potential for site contamination on the basis of field observations, historical land uses, anecdotal and documentary evidence.		
Findings	 Land titles records and historic aerial photography indicated that the site was previously used for residential - market gardening purposes, prior to the construction of a commercial/industrial warehouse in the 1960s. Commercial/industrial site use continued at the site from the 1960s Records also indicated that former site use also included an operational petrol station. 		
	 The site inspection identified potential asbestos containing materials across the ground surface, poor concrete condition, mixed aggregate, oil waste, overgrown weeds with accessible soils in the southern portion, one groundwater monitoring well in the north-eastern corner and the existence of potentially four USTs; 		
	 The site has not reported as being subject to regulation in relation to environmental impacts, as documented in the EPA public registers. Further to this no other sites within 500m radius of the site have been reported. A search of the Protection of the Environment Operations (POEO) Act, did not identify any record for the site although three sites were identified within a 500 m radius; 		
	 Records from SafeWork NSW did not indicate historical storage of chemicals and underground storage tanks at the site. Anecdotal information, however, indicated UPSS to be present and USTs likely remained in-situ; 		
	 Records from Liverpool Council identified potential activities, such as demolition of existing structures that could lead to potential contamination of shallow surface soils at site; 		
	 The presence of a number of contaminating sources at the site, including imported filling, former commercial/industrial uses (i.e. service station), pesticides from market garden use, as well as hazardous building materials from former demolitions, etc., indicate a potential for contamination to be present. In light of this, the CSM developed identified a number of potential exposure pathways which may present a risk to future users of the site and to workers during construction and maintenance activities. 		
Conclusions	El concluded that there is potential for contamination to be present on site. With consideration given to the nature of the proposed land use and potential risk of exposure to end users of the site from possible contamination, an intrusive detailed site investigation should be completed to understand the quality of site soils and groundwater.		

. In ÷., . -

4. CONCEPTUAL SITE MODEL

In accordance with NEPC (2013) Schedule B2 – Guideline on Site Characterisation, EI developed a conceptual site model (CSM) that assessed plausible linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and identifies gaps in the existing site characterisation.

4.1 Summary of Site History

Based on the historical information reviewed (**Section 3**), it appears that the site was used for residential properties from at least 1930s to 1960s, and then was operated as a petrol service station from 1960s until 2018.

All surface infrastructure was demolished and removed from the site at the time of a first site inspection in 2019 (**Section 3**).

4.2 Potential Contamination Sources

The contamination appraisal indicated that there was potential for contamination to occur on the site, derived from the following sources:

- Impacts from the storage and use of petroleum chemicals, in particular leaks from underground petroleum storage systems (UPSS); and
- Deep natural soils potentially containing residual impacts from UPSS representing potential secondary sources of contamination that are migrating off-site in local groundwater.
- Remnant materials from demolition of former structures and service pits (damaged Telstra pits previously observed).
- Importation of fill from unknown origin.

Per- and Poly- Fluoroalkyl Substances (PFAS)

EPA (2017) requires that PFAS are considered when assessing land contamination. El used the following decision tree (**Table 4-1**), based on the EnRisk (2016) *Proposed Decision Tree for Prioritising Sites Potentially Contaminated with PFAS* and NEMP (2020) *PFAS National Environmental Management Plan*, for determining the potential for PFAS to be present on-site and whether PFAS sampling of soil and groundwater is required.

In this instance, the potential for PFAS contamination was low and corresponding sampling / analysis of soil and groundwater was not warranted.

Emerging Chemicals

The EPA uses chemical control orders (CCOs) as a primary legislative tool under the *Environmentally Hazardous Chemicals Act 1985* to manage chemicals of concern and limit their potential impact on the environment. Considerations for chemicals controlled by CCOs, and other potential emerging chemicals, are outlined in **Table 4-2**.

In this instance, the potential for an emerging chemical of concern to be present on-site was limited to the application of organic pesticides (around building footings and perimeters and/or in imported filling of unknown origin / quality).

Table 4-1 PFAS Decision Tree

Preliminary Screening	Probability of Occurrence ¹
Has an activity listed in NEMP (2020) ² as being associated with PFAS contamination occurred on-site? If so, list activity.	L
Has an activity listed in NEMP (2020) ² as being associated with PFAS contamination occurred up-gradient or adjacent to the site? If so, list activity.	L
Did fire training involving the use of suppressants occur on-site between 1970 and 2010?	L
Did fire training occur up-gradient or adjacent to the site between 1970 and 2010? ³	L
Have "fuel" fires ever occurred on-site between 1970 and 2010? (e.g. ignition of fuel (solvent, petrol, diesel, kerosene) tanks?)	Unknown
Have PFAS been used in manufacturing or stored on-site? 4	L
Could PFAS have been imported to the site in fill materials from a site with an activity listed in NEMP (2020)?	L
Could PFAS-contaminated groundwater or run-off have migrated on to the site?	L
Is the site or adjacent sites listed in the NSW EPA PFAS Investigation Program? ⁵	L
If the probability is medium or high in any of the rows, does the site analytical suite need to be optimised to include preliminary sampling and testing for PFAS in soil (including ASLP testing) and waters?	No

Note 1 Probability: L – low (all necessary documentation has been reviewed and there is no recorded instance or compelling rationale); M – moderate (all necessary documentation has been reviewed and there is potential evidence of a recorded instance with compelling rationale); H – high (all necessary documentation has been reviewed and there is evidence of a recorded instance with compelling rationale).

Note 2 Activities listed in Appendix B of NEMP (2020).

Note 3 Runoff from up-gradient PFAS use may impact surface water, soil, sediment and groundwater.

 Note 4 PFAS is used wide range of industrial processes and consumer products, including in the manufacture of nonstick cookware, specialised garments and textiles, Scotchguard[™] and similar products (used to protect fabric, furniture, leather and carpets from oils and stains), metal plating and in some types of fire-fighting foam. (https://www.nicnas.gov.au/chemical-information/factsheets/chemical-name/perfluorinated-chemicals-pfas)
 Note 5 Refer to https://www.epa.nsw.gov.au/your-environment/contaminated-land/pfas-investigation-program.

Emerging Chemicals

Table 4-2 Emerging or Controlled Chemicals

Chemicals of Concern (CCO or emerging)	Decision
Were aluminium smelter wastes used or stored on site (CCO, 1986)?	No
Do dioxin contaminated wastes (CCO, 1986) have the potential to impact the site? ¹	No
Were organotin products (CCO, 1989) used or stored on site? ²	No
Were polychlorinated biphenyls (PCBs) used or PCB wastes (CCO, 1997) stored on-site? ³	No
Were scheduled chemical or wastes (CCO, 2004) used or stored? ⁴	Potential for organic pesticides to have been used
Are other emerging chemicals suspected? ⁵	No
If Yes to any questions, has site sampling suite been optimised to include sampling for these chemicals of concern?	Yes

Note 1 From burning of certain chemicals, smelting or chemical manufacturing or fire on or near the site.

Note 2 From anti-fouling paints used or removed at boat and ship yards and marinas.

Note 3 From older transformer oils and electrical capacitors

Note 4 Twenty-four mostly organochlorine pesticides and industrial by-products

Note 5 Other chemicals considered as emerging (e.g. 1,4 dioxane; associated with some CVOC).

4.3 Contaminants of Potential Concern

The COPC at the site were considered to be:

- Soil heavy metals, total recoverable hydrocarbons (TRH), the monocyclic aromatic hydrocarbons benzene, toluene, ethylbenzene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs) including naphthalene and benzo(α)pyrene, phenols and asbestos.
- Groundwater dissolved heavy metals, TRH, BTEX, VOCs, phenolic compounds (total), chlorinated hydrocarbons and PAHs.

4.4 Exposure Pathways, Receptors and Linkages

The contamination appraisal established there was potential for contamination to occur on the site. Being of high clay content, the sub-surface would restrict vertical migration of contaminants to the groundwater resource. Direct exposures were therefore of greatest concern.

The following potential receptors of site contamination were identified:

- Existing and future site occupants, in particular maintenance and service workers;
- Users of the adjacent land; and
- Ecological receptors in areas of exposed soil/landscaping.

A summary of the CSM, with identification of the potential pollutant linkages, is provided in **Table 4-3**.

Source of Contamination	Exposure Pathway	Receptor(s)
Impacts from demolition of former structures	Dermal Contact Ingestion (dust) Inhalation	Future Site Users Adjacent Site Users
Impacts from imported fill	Dermal Contact Ingestion (dust) Inhalation	Future Site Users Adjacent Site Users
Impacts from historic service station activities	Dermal Contact Ingestion (dust) Inhalation / vapour intrusion	Future Site Users Adjacent Site Users
In-Situ USTs	Vapour Intrusion to air Leaking to soil	Future Site Users Adjacent Site Users
	Vertical migration to groundwater	Groundwater Bigge Park (170m east) Georges River (490m south east)

Table 4-3 Conceptual Site Model

5. METHODOLOGY

5.1 Sampling, Analytical and Quality Plan

The SAQP ensures that the data collected during environmental works at a site are representative and provide a robust basis for assessment decisions. The SAQP for this DSI included the following:

- Data quality objectives, including a summary of the objectives of the DSI;
- Investigation methodology, including the media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling procedures (including sample handling, preservation and storage);
- Field screening methods;
- Laboratory analysis methods; and
- Analytical quality assurance / quality control (QA/QC).

5.2 Data Quality Objectives

In accordance with the NEPC (2013) Schedule B2 Guideline on Site Characterisation, the USEPA (2006) Data Quality Assessment and EPA (2017) Guidelines for the NSW Site Auditor Scheme, data quality objectives (DQO) were developed by the EI investigation team, following the NEPM- / EPA- endorsed, seven step process (**Table 5-1**). In doing so, the appropriate levels of data quantity and quality needed for the specific requirements of the project were established.

 Table 5-1
 Summary of Project Data Quality Objectives

DQO Step	Details
1. State the Problem Summarise the contamination problem that will require new	Site history (Section 3) identified a range of contamination sources with potential to have impacted the site. Intrusive investigation was required to determine:
environmental data, and identify the resources available to resolve the problem; develop a conceptual site model.	Is the site suitable for the proposed residential development with minimal access to soil? and
	 Does the site pose an unacceptable risk to human and/or ecological receptors?
2. Identify the Goal of the Study (Identify the decisions)	Based on the objectives outlined in Section 1.3, the decisions that need to be made are:
Identify the decisions that need to be made on the	Has the nature, extent and source of any soil and/or groundwater impacts onsite been defined?
contamination problem and the new environmental data required to make them.	What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified?
	 Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite?
	 Does the collected data provide sufficient information to allow the suitability of the site to be determined, or selection and design of an appropriate remedial strategy, if necessary?
	 If the data does not provide sufficient information, what data gaps require closure to enable the suitability of the site to be determined, or selection and design of an appropriate remedial strategy?
3. Identify Information Inputs (Identify inputs to decision)	Inputs to the decision-making process include:
Identify the information needed to support any decision and	 Proposed development and land use;
specify which inputs require new environmental	 Review of the previous investigation at the site;
measurements.	 National and NSW EPA guidelines made or approved under the NSW Contaminated Land Management Act 1997;
	 Visual observation and documentation (i.e. field notes, photographs) during site works;
	 Assessment of soil analytical results in relation to the adopted human health and ecological criteria;
	At the end of the assessment, a decision had to be made regarding the suitability of the site for the proposed development, or if additional investigation or remedial works were required to make the site suitable for the proposed use.
4. Define the Boundaries of the Study	Lateral – The cadastral boundaries of the site;
Specify the spatial and temporal aspects of the	Vertical – Investigations will be advanced to the depth of natural soils or rock;
environmental media that the data must represent to support decision.	Temporal – The results will be valid on the day samples are collected and will remain valid as long as no changes occur in regards to site use, and contamination (if present) does not migrate onto the site from off-site sources.

DQO Step	Details
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions.	 The decision rules for the investigation were: If the concentrations of contaminants in the soil exceed the adopted criteria, then assess the need to further investigate the extent of impacts onsite. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2.
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors)	Specific limits for this project were in accordance with national and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This included the following points to quantify tolerable limits:
Specify the decision-maker's acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data.	 The null hypothesis for the investigation is that the 95% Upper Confidence Limits (UCL) of the mean for contaminants of concern exceed relevant commercial land use criteria across the site. The acceptance of the site will be based on the probability that: The 95% UCL of the mean of the data will satisfy the given site criteria. Therefore, a limit on the decision error will be 5% that a conclusive statement may be incorrect;
	 The standard deviation of the results is less than 50% of the relevant remediation acceptance criterion; and No single results exceed the remediation acceptance criteria by 250% or more.
	 Soil concentrations for chemicals of concern that are below investigation criteria made or approved by the EPA will be treated as acceptable and indicative of suitability for the proposed land use(s).
	 If contaminant concentrations in soil or groundwater exceed the adopted criteria, further investigation will be considered prudent. If no contamination is detected, no further action is required.
7. Develop the Detailed Plan for Obtaining Data (Optimise the design for obtaining data)	In order to identify the most resource-effective sampling and analysis design for general data that are expected to satisfy the DQO:
Identify the most resource-effective sampling and analysis	 Written instructions were issued to guide field personnel in the required fieldwork activities.
design for general data that are expected to satisfy the DQOs.	 12 soil sampling locations (BH201-BH212), in accordance with the minimum points recommended for a site of 0.35 ha according to the EPA (1995) Sampling Design Guidelines, using a systematic triangular grid pattern across safely accessible parts of the site.
	 An upper soil profile sample was collected at each borehole location and tested for the COPC, to assess the conditions of the fill/topsoil layer, and impacts from activities at ground level.
	 Further discrete natural soil samples were analysed for COPC. Samples were selected based on field observations (including visual and olfactory evidence), whilst giving consideration to characterise the subsurface soil stratigraphy.
	 In-field screening of soil headspace samples for VOC contamination was carried out with a portable Photo-Ionisation Detector (PID).
	 Collection of groundwater samples from three constructed monitoring wells, of which one monitoring well was located near and down gradient of UST area. Analysis of groundwater samples for COPC.
	 Review of the results was undertaken to determine if further sampling was warranted (i.e. where soil or groundwater concentrations were found to exceed the adopted criteria endorsed by the EPA, relevant to the proposed land use(s)).

5.3 Data Quality Indicators

To ensure that the investigation data were of an acceptable quality, they were assessed against the data quality indicators (DQI) outlined in **Table 5-2**, which related to both field and laboratorybased procedures. The overall assessment of data quality is discussed in **Section 6** and **Appendix H**.

Table 5-2 Data Quality Indicators

QA/QC Component	Data Quality Indicator
Precision A quantitative measure of the variability (or reproducibility) of data	 Data precision was assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision was deemed acceptable if RPDs were found to be less than 30%. RPDs that exceeded this range were considered acceptable where: Results were less than 10 times the limits of reporting (LOR); Results were less than 20 times the LOR and the RPD was less than 50%; or Heterogeneous materials or volatile compounds were encountered.
Accuracy A quantitative measure of the closeness of reported data to the "true" value	 Data accuracy was assessed through the analysis of: Split field duplicate sample sets (RPDs as above); Field and method blanks, analysed for the analytes targeted in the primary samples; Matrix spike and matrix spike duplicate sample sets; and Laboratory control samples.
Representativeness The confidence (expressed qualitatively) that data are representative of each medium present onsite	 To ensure the data produced by the laboratory were representative of conditions encountered in the field, the following measures were taken: Blank samples run in parallel with field samples, to confirm there were no unacceptable instances of laboratory artefacts; Review of RPDs for field and laboratory duplicates to provide an indication that the samples were generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and The appropriateness of collection methodologies, handling, storage and preservation techniques was assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).
Completeness A measure of the amount of useable data from a data collection activity	 Analytical data sets acquired during the DSI were evaluated as complete upon confirmation that: Standard operating procedures (SOPs) for sampling protocols were adhered to; and Copies of all chain of custody (COC) documentation were included and found to be properly completed. It could therefore be considered whether the proportion of "useable data" generated in the data collection activities was sufficient for the purposes of the land use assessment.
Comparability The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event	Given that several data sets from separate sampling episodes were required, issues of comparability were reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity. In addition the data were collected by experienced samplers and NATA- accredited laboratory methodologies will be employed.

5.4 Sampling Rationale

With reference to the CSM described in **Section 4**, soil sampling works were planned in accordance with the following rationale:

- Drilling of boreholes at 12 locations placed across accessible parts of the site, to characterise *in situ* soils. Sampling fill and natural soils from 12 locations for laboratory assessment;
- Installation of three groundwater monitoring wells with BH201M located hydraulically upgradient to the site, BH202M hydraulically down-gradient of the UST area and BH205M located hydraulically down-gradient to the site;
- One groundwater monitoring event (GME) from the three newly installed groundwater wells during this investigation; and
- Laboratory analysis of representative soil and groundwater samples for COPC.

5.5 Investigation Constraints

The number of test bores drilled during the investigation phase achieved the planned investigation scope described in **Section 1.4**.

The identified UST area was not directly investigated due to safety considerations. Location BH202M was located near to the UST area.

5.6 Assessment Criteria

The assessment criteria adopted for this DSI are outlined in **Table 5-3**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenarios that are expected for various parts of the site, the likely exposure pathways, and the identified potential receptors. For the purposes of this DSI, the adopted criteria were termed *Soil Investigation Levels* (SILs).

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPC (2013) HILs, HSLs, and Management Limits for TRH	 Soil Health-based Investigation Levels (HILs) NEPC (2013) HIL-B for land use Residential with minimal opportunities for soil access. Soil Health-based Screening Levels (HSLs)
		 NEPC (2013) HSL-D for commercial / industrial sites as the proposed development is residential apartments over basement car parking, per Section 2.4.8 of Schedule B1, NEPC (2013)
		 Asbestos HSLs: Presence / absence of asbestos (not- detected; 0.01% w/w semi-quantitation limit) were adopted for preliminary screening purposes.
		 Management Limits for Petroleum Hydrocarbons Where the HSLs for petroleum hydrocarbons were exceeded, sample results were assessed against the NEPC (2013) Management Limits for the F1-F4 TRH fractions, to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards and adverse effects on buried infrastructure.

Table 5-3	Adopted Investigation	Levels for Soil a	and Groundwater
	/ dopted in rootigation		

Environmental Media	Adopted Guidelines	Rationale
		 Ecological Investigation and Screening Levels (EIL/ESLs)
		 NEPM 2013 ESLs for selected petroleum hydrocarbons 8 TRH fractions for protection of terrestrial ecosystems.
		Asbestos
		 Presence/Absence (for initial screening purposes)
Groundwater	ANZG (2018)	Groundwater Investigation Levels (GILs)
	and NEPC (2013)	 ANZG (2018) Groundwater Investigation Levels for Fresh Waters.
		Health-based Screening Levels (HSLs)
		 NEPC (2013) HSL-D for commercial / industrial sites.
		Recreational Water
		 NHRMC (2011 – update August 2018 v.3.5) Drinking Water Guidelines.

5.7 Soil Sampling

The soil sampling works conducted at the site are described in **Table 5-4**. Sampling locations are illustrated in **Figure 2** (**Appendix A**).

Table 5-4 Summary of Soil Sampling Methodology

Activity/Item	Details
-	
Fieldwork	Intrusive borehole drilling and soil sampling were conducted on 9 November 2020, A total of 12 boreholes (BH201-BH212) were drilled for the current investigation.
Method	All test bores were drilled using a Hanjin drill rig, fitted with solid flight augers. Borehole details are presented in the detailed logs, attached in Appendix D .
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on Australian Standard (AS) 1726-2017. Sample descriptions are included in the borehole logs, presented in Appendix D .
Soil Sampling	Soil samples were collected using a dry grab method (the sampler wearing unused, dedicated nitrile gloves) and placed into laboratory-supplied, acid-washed, solvent- rinsed glass jars, or snap-lock, plastic bags. Blind and split field duplicates were separated from the primary samples and placed into dedicated glass jars. At each location, aliquots of soil were placed into separate zip-lock bags for asbestos and for in-field VOC screening, the latter performed using a photo-ionisation detector (PID).
Field Observations (including visual and olfactory signs of contamination)	 A summary of field observations is provided as follows: Ash and slag were not observed in any of the examined soils; No visual signs of contamination, such as fragments of fibre cement sheeting (FCS), were observed in any of the examined soils; and No significant odour or staining was detected in any of the examined soil samples. Minor petroleum odour was noted in soil samples collected from the fill horizon at location BH202M
Soil Vapour Screening	Screening for VOC was performed in the field using a portable PID, fitted with a 10.9eV lamp (Appendix E). Low PID readings were recorded (≤10 ppm), consistent with the non-detection of any suspicious odour.
Decontamination Procedures	Nitrile sampling gloves were replaced between each sampling location. Samples were collected from a different part of the solid flight auger and the auger was cleaned from all residual soil waste between each borehole location.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Sample Preservation and Transport	Samples were stored in a chilled (with ice packs) chest, whilst on-site and in transit to the contracted laboratories. Soil samples were transported to SGS Environmental Services (SGS; the primary laboratory) under strict chain-of-custody (COC) conditions. Signed COC certificates and sample receipt advice (SRA) were provided by SGS for confirmation purposes (Appendix F). A split (inter-laboratory) soil field duplicate was submitted to Envirolab Services Pty Ltd (Envirolab; the secondary laboratory) under strict COC conditions. Signed COC forms and SRA were provided by Envirolab for confirmation purposes (Appendix F).
Laboratory Analysis and Quality Control	Soil samples were analysed by SGS and Envirolab for the COPC. All samples were analysed within the required holding period, as documented in the corresponding laboratory reports (Appendix G). In addition to the split (inter-laboratory) field duplicate (QT1; analysed by Envirolab), QC testing comprised one blind (intra-laboratory) field duplicate (QD1), an equipment rinsate blank, a laboratory-prepared, trip spike soil sample and a laboratory-

Activity/Item	Details
	prepared, trip blank soil sample, all analysed by SGS.

5.8 Groundwater Investigation

The groundwater investigation works conducted at the site are described in **Table 5-5**. The monitoring well locations (BH201M, BH202M and BH205M) are illustrated in **Figure 2**.

Table 5-5	Summarv	of	Groundwater	Investigation	Methodology
	Gainnary	<u> </u>	oroananator	moonganon	mounoadiogy

Activity/Item	Details
Fieldwork	The groundwater monitoring wells (BH201M, BH202M and BH205M) were installed on 9 November 2020 and developed on the same day. Water level gauging, well purging, field testing and groundwater sampling were conducted on 17 November 2020.
Well Construction	Well construction details are tabulated in Table 7-2 and documented in the BH201M, BH202M and BH205M bore log presented in Appendix D . The well was installed to screen the shale aquifer within the interval 6-9m BGL. Well construction was in general accordance with the standards described in NUDLC (2012) and involved the following:
	 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing, with slotted intervals in shallow wells set to screen to at least 500 mm above the standing water level to allow sampling of phase-separated hydrocarbon product, if present;
	 Base and top of each well was sealed with a uPVC cap; Annular, graded sand filter was used to approximately 300 mm above top of screen interval;
	 Granular bentonite was applied above annular filter to seal the screened interval;
	 Drill cuttings were used to backfill the bore annulus to just below ground level; and
	 Surface completion comprised a steel road box cover set in neat cement and finished flush with the concrete slab level.
Well Development	Well development was conducted on the same day after the installation. This involved agitation within the full length of the water column using a dedicated, high density polyethylene (HDPE), disposable bailer, followed by removal of water and accumulated sediment using a 12V, HDPE submersible bore pump (Proactive Environmental, model <i>Super Twister</i>). Pumping was continued until no further reduction in suspended sediment was observed (i.e. after removal of several well volumes).
Well Gauging and Groundwater Flow Direction	All monitoring wells were gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 17 November 2020 and the measured SWL is shown in Table 7-2 . Groundwater flow direction was assumed to be southeast.
Well Purging and Field Testing	No volatile organic odours, sheen or phase separated hydrocarbons (PSH) were detected during any stage of well purging. Measurement of water quality parameters (dissolved oxygen (DO), electrical conductivity (EC), reduction / oxidation potential (Redox), pH and temperature (T)) was conducted repeatedly during well purging and values were recorded onto field data sheets (Appendix E). Groundwater was initially observed to be grey/brown in colour with suspended sediments. The suspended sediment level reduced as purging continued. Purged water volumes removed from each well and field test results are summarised in Table 7-3 .

Activity/Item	Details
Groundwater Sampling	Groundwater was sampled using a micro-purge system. Water was continuously measured for temperature, EC, Redox, DO and pH. Once three consecutive field measurements were recorded to within $\pm 10\%$ for DO, $\pm 3\%$ for EC, ± 0.2 for pH, $\pm 0.2^{\circ}$ C for T and ± 20 mV for Redox, this was considered to indicate that representative groundwater quality had been achieved and final physico-chemical measurements were recorded. Groundwater samples were then collected from the micro-purge sampling pump discharge point.
Decontamination Procedure	Decontamination was not required as sampling equipment was stored and transported prior to use in factory-sealed, plastic sleeves, and each bladder was dedicated to and replaced new at each individual well. All sample containers were supplied by the laboratory for the particular project and only opened once immediately prior to sampling. Ice was used to keep the samples cool, melt water was continuously drained from the esky to prevent cross-contamination of samples.
	The water level probe and water quality kit probes were washed in a solution of potable water and <i>Decon 90</i> and then rinsed with potable water between measurements/wells.
Sample Preservation	Sample containers were supplied by the laboratory with the following preservatives:
	 one, 1 litre amber glass, acid-washed and solvent-rinsed bottle;
	 two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon- sealed; and
	one, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1 mL).
	Samples for metals analysis were field-filtered using 0.45 μ m pore-size membranes. All containers were filled with sample to the brim then capped and stored in ice-filled chests, until completion of the fieldwork and during sample transit to the laboratory.
Sample Transport	After sampling, refrigerated sample chests were transported to SGS using strict COC procedures. SRA was provided by the laboratory to document sample condition upon receipt. Copies of the SRA and COC certificates are presented in Appendix F .
Laboratory Analysis and Quality Control (QC)	All groundwater samples were submitted to SGS for analysis of the previously- identified COPC. QA/QC testing comprised an intra-laboratory (blind field) duplicate, a rinsate blank, a trip blank and a trip spike, all tested by SGS.

6. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental results to determine if they meet the objectives of the project (USEPA, 2006). For this DSI, data quality assessment involved an evaluation of the compliance of the field (sampling) and laboratory procedures with established protocols, as well as the accuracy and precision of the associated results from the quality control measures. The findings are summarised in **Table 6-1** and discussed in detail in **Appendix H**.

In summary, the overall quality of the analytical data from this DSI was considered to be of an acceptable standard for interpretive use and preparation of an updated CSM.

Stage	Control	Conformance [Yes, Part, No]	Report Section(s)
Preliminaries	Data Quality Objectives established	Yes	Section 5
Field Work	Suitable documentation of fieldwork observations including borehole logs, field notes	Yes	Appendices D, E and F
Sampling Plan	Use of relevant and appropriate sampling plan (density, type, and location)	Yes	See sample rationale (Section 5.4)
	All media sampled and duplicates collected	Yes	See results summary table in Appendix B
	Use of approved and appropriate sampling methods (soil, groundwater)	Yes	Section 5.6
	Selection of soil samples according to field PID readings (where VOCs are present)	Yes	Section 7
	Preservation and storage of samples upon collection and during transport to the laboratory	Yes	Section 5.6
	Appropriate rinsate, field and trip blanks taken	Yes	Appendix H
	Completed field and analytical laboratory sample COC procedures and documentation	Yes	Appendices F and G
Laboratory	Sample holding times within acceptable limits	Yes	Appendices H and I
	Use of appropriate analytical procedures and NATA-accredited laboratories	Yes	Appendices H and I
	LOR/PQL low enough to meet adopted criteria	Yes	Appendices H and I
	Laboratory blanks	Yes	Appendices H and I
	Laboratory duplicates	Yes	Appendices H and I
	Matrix spike/matrix spike duplicates	Yes	Appendices H and I
	Surrogates	Yes	Appendices H and I
	Analytical results for replicated samples, including field and laboratory duplicates and inter-laboratory duplicates, expressed as	Yes	Appendices H and I

Table 6-1 Quality Assurance Process

Stage	Control	Conformance [Yes, Part, No]	Report Section(s)
	RPD		
	Checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements	Yes	Appendices B, F, H and I
Reporting	Report reviewed by senior staff to assess project meets desired quality, EPA guidelines and project outcomes.	Yes	See Report Distribution page at front of report.

7. RESULTS

7.1 Field Inspection

A GPR survey was conducted at 28 Elizabeth St, Liverpool on 7th November 2020 (**Appendix E**). The GPR scan confirmed 5 Underground Storage Tanks exist at this site. Four Tanks are located within the same Tank farm on the Elizabeth St side of the site. A fifth tank was located towards the middle of the site, adjacent east of the now demolished building. Field inspection identified related infrastructure including UST fill points, and bowser foot prints. It is likely that sub-surface UPSS infrastructure from the former service operation remains in place at the site.

7.2 Soil Investigation Results

7.2.1 Subsurface Conditions

The general site lithology encountered during the drilling of the test boreholes (and installation of the monitoring well) was identified to be a layer of silty clay and sandy clay fill overlying natural residual silty clay and then shale bedrock. Sand fill was encountered at BH202M located in proximity to the UST area. The information obtained during the investigation is summarised further in **Table 7-1** and borehole logs from these works are presented in **Appendix D**.

Layer	Description	Depth to top and bottom of layer (mBGL)
Fill	Silty CLAY; medium to high plasticity, dark brown, with trace of sub-angular to angular gravels, no odour. Sandy CLAY; low plasticity, brown, fine grained sand and trace of sub-angular to angular gravels, no odour.	0.0-1.0 3.5m of sand fill was encountered at BH202 only & minor petroleum odour observed
Natural	Silty CLAY; medium to high plasticity, grey, orange mottled red, no odour.	1.0-6.0
Bedrock	SHALE; pale brown, moderately weathered, no odour.	6.0-9.0 +

Table 7-1 Generalised Subsurface Profile

+ = termination depth of deepest borehole

7.2.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0-4.0m BGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal) and the following observations were noted (bore logs in **Appendix E**):

- Visual or olfactory evidence of hydrocarbon impacts was not detected at any borehole location, except at BH202M where minor petroleum odour was observed in sand fill;
- Fibre containing substances (FCS), ash, charcoal, asbestos containing material (ACM) or slag were not observed in any of the examined soils; and
- Low PID readings were recorded for the in-field, soil headspace samples (<5ppm), consistent with the non-detection of any suspicious odour in the examined soils at all locations except BH202M.

•

At BH202M, PID readings were slightly elevated in sand fill and ranged from 12.7 ppm to 19.1 ppm. The PID reading in underlying clay was 3.4 ppm.

7.3 Groundwater Investigation Results

7.3.1 Monitoring Well Construction

Three groundwater monitoring wells were installed on-site as part of this DSI. Construction details for the installed well are summarised in **Table 7-2**.

Table 7-2	Monitoring	Well	Construction	Details
-----------	------------	------	--------------	---------

Well ID	Bore Depth (m BGL)	Screen Interval (m BGL)	Lithology Screened
BH201M	9	6-9	shale
BH202M	9.4	6.4-9.4	shale
BH205M	9	6-9	Silty clay and shale

BH202M was located close to and down gradient of the identified UST area.

7.3.2 Field Observations and Water Test Results

A single GME was conducted on three newly installed wells on 17 November 2020. The associated field measurements are recorded in **Table 7-3** and copies of the completed Field Data Sheets are included in **Appendix E**. Groundwater survey was not conducted during this investigation.

Well ID	Stick- up/down (m BGL)	SWL (m BGL)	Purge Volume (L)	DO (mg/L)	рН	EC (μS/cm)	Temp (°C)	Redox¹ (mV)	Turbidity
BH201 M	-0.09	2.97	3.0	0.04	6.96	42,060	23.42	183.3	slight to moderate
BH202 M	-0.1	3.76	2.5	0.68	7.61	25,794	24.11	239.6	Low
BH205 M	0.76	3	3.0	0	6.59	37,632	23.62	329.1	low

Table 7-3 Groundwater Field Data

Notes:

SWL – Standing Water Level

¹ Field Redox (mV) readings adjusted to Standard Hydrogen Electrode (SHE) by adding field electrode potential (205mV). DO – Dissolved Oxygen in units of milligrams per litre (mg/L)

EC - groundwater electrical conductivity as measured onsite using portable EC meter

mBGL - metres below ground level (All wells were completed as standpipes with measured

stickup/stickdown as shown) mV – millivolts

L – litres (referring to volume of water purged from the well prior to groundwater sample collection) Redox – Reduction Potential

µS/cm - micro Siemens per centimetre (EC units)

The field data indicated that the groundwater was slightly acidic at locations BH201M and BH205M and slightly alkaline at location BH202M, saline (EC: 25,794 to 42,060 μ S/cm) and oxidising (Redox 183 to 329 mV) but anoxic (DO: 0-0.68 mg/L).

7.4 Laboratory Analytical Results

7.4.1 Soil Analytical Results

A summary of the laboratory results, is presented in **Table 7-4**. More detailed tabulation of the results, showing the tested concentrations for individual samples and comparison against SILs, are presented in **Table T1** at the end of this report (**Appendix B**).

Table 7-4 Summary of Soil Analytical Results

Number of Primary Samples	Analyte	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding SIL
Petroleum Hydrocarbons				
20	Benzene	<0.1	<0.1	None
20	Toluene	<0.1	<0.1	None
20	Ethyl benzene	<0.1	<0.1	None
20	Total xylenes	<0.3	<0.3	None
20	Naphthalene	<0.1	<0.1	None
20	F1	<25	<25	None
20	F2	<25	<25	None
20	F3	<90	160	None
20	F4	<120	<120	None
PAHs				
20	Total PAHs	<0.8	22	None
20	Carcinogenic PAHs	<0.3	1.9	None
20	Benzo(a)pyrene	<0.1	1.3	None
OCPs				
12	Total OCPs	<pql< td=""><td><pql< td=""><td>None</td></pql<></td></pql<>	<pql< td=""><td>None</td></pql<>	None
OPPs				
12	Total OPPs	<pql< td=""><td><pql< td=""><td>None</td></pql<></td></pql<>	<pql< td=""><td>None</td></pql<>	None
Heavy Metal				
20	Arsenic	<1	9	None
20	Cadmium	<0.3	<0.3	None
20	Chromium (Total)	0.7	80	None
20	Copper	2	35	None
20	Lead	3	180	None
20	Mercury	<0.05	0.7	None
20	Nickel	0.9	87	BH209_0.2-0.3 (87 mg/kg, exceedance of EIL)

Number of Primary Samples	Analyte	Minimum Concentration (mg/kg)	Maximum Concentration (mg/kg)	Samples Exceeding SILs
20	Zinc	3	250	BH203_0.1-0.2 (250 mg/kg, exceedance of EIL
PCBs				
12	Total PCBs	<1	<1	None
Asbestos				
12	Asbestos	No asbestos detected	Asbestos detected	BH207_0.2-0.3, BH209_0.2- 0.3, BH210_0.2-0.3

7.4.2 Groundwater Analytical Results

Laboratory analytical results for groundwater samples are summarised in **Table 7-5 and Table T2**, the latter presented at the end of this report (**Appendix B**).

Number of Primary Samples	Analyte	Minimum Concentration (µg/L)	Maximum Concentration (µg/L)	Samples Exceeding GIL
Metals				
3	AI	10	18	None
3	As	1	3	None
3	Cd	<0.1	0.1	None
3	Cr	<1	120	BH202M-1
3	Cu	<1	4	BH201M-1
3	Pb	<1	<1	None
3	Hg	<0.1	<0.1	None
3	Ni	5	13	BH205M-1
3	Zn	17	63	BH201M-1, BH202M-1, BH205M-1
PAHs				
3	Total PAHs	<1	2	None
3	Benzo(α)pyrene	<0.1	<0.1	None
3	2-methylnaphthalene	<0.1	0.3	None

<0.1

<0.1

<0.1

<0.1

<0.1

0.2

<0.1

0.9

0.1

0.2

Table 7-5 Summary of Groundwater Analytical Results

1-methylnaphthalene

Acenaphthylene

Acenaphthene

Phenanthrene

Naphthalene

None

None

None

None

None

3

3

3

3

3

BTEX

3Toluene<0.5	Number of Primary Samples	Analyte	Minimum Concentration (µg/L)	Maximum Concentration (µg/L)	Samples Exceeding GIL
3Ethylbenzene<0.50.7None3o-xylene<0.5	3	Benzene	<0.5	1	None
3 o-xylene <0.5 1.1 None 3 m/p-xylene <1	3	Toluene	<0.5	<0.5	None
3 m/p-xylene <1 2 None TRHs 3 F1 <50	3	Ethylbenzene	<0.5	0.7	None
TRHs 3 F1 <50	3	o-xylene	<0.5	1.1	None
3 F1 <50 <50 None 3 F2 <60	3	m/p-xylene	<1	2	None
3 F2 <60 <60 None 3 F3 <500	TRHs				
3 F3 <500 <500 None 3 F4 <500	3	F1	<50	<50	None
3F4<500<500NonePhenols3Phenols<10	3	F2	<60	<60	None
Phenols3Phenols<10	3	F3	<500	<500	None
3Phenols<10NoneVOCs3Naphthalene<0.5	3	F4	<500	<500	None
VOCs3Naphthalene<0.5	Phenols				
3Naphthalene<0.50.6None3Carbon disulfide<2	3	Phenols	<10	10	None
3Carbon disulfide<22None3Chloroform (THM)<0.5	VOCs				
3Chloroform (THM)<0.52.1None3Bromodichloromethane (THM)<0.5	3	Naphthalene	<0.5	0.6	None
3Bromodichloromethane (THM)<0.52.5None3MIBK (4-methyl-2- pentanone)<5	3	Carbon disulfide	<2	2	None
(THM) 3 MIBK (4-methyl-2- <5 36 None pentanone)	3	Chloroform (THM)	<0.5	2.1	None
pentanone)	3		<0.5	2.5	None
3 Total VOCs <10 39 None	3		<5	36	None
	3	Total VOCs	<10	39	None

8. Site Characterisation

8.1 Review of Conceptual Site Model

On the basis of the investigation findings, the CSM discussed in **Section 4** was considered to appropriately identify contamination sources, migration mechanisms and exposure pathways, as well as potential on-site and off-site receptors.

8.2 Soil Characterisation

The general site lithology was described as:

- Silty clay and sandy clay fill to a maximum depth of 1m BGL. Sand fill at BH202M to a maximum depth of 3.5m BGL; overlying
- Natural, residual silty clay (which extended to at least 8m BGL); overlying
- Bedrock, shale; pale brown, moderately weathered, no odour.

Laboratory Results

Petroleum hydrocarbons

- No BTEX was detected in any fill or natural soil sample. Adopted SILs were not exceeded
- No naphthalene was detected in any fill or natural soil sample. The adopted SIL was not exceeded
- No petroleum hydrocarbons (as TRHs) were detected in any fill or natural soil sample except for a minor concentration of TRH-F3 in fill at location BH210.

<u>PAHs</u>

- Carcinogenic PAHs were reported at low concentration in fill at BH203, BH206, BH208 and BH210. The adopted health based SIL was not exceeded.
- Benzo(a)pyrene (B(a)P) was reported at low concentration in fill at BH203, BH206, BH208 and BH210. The adopted ecological SIL was not exceeded

<u>Metals</u>

- Concentrations of metals in fill and natural soil were low.
- No health based SIL was exceeded
- Zinc exceeded the adopted EIL in fill at BH202. Nickel exceeded adopted EIL in fill at BH209. The exceedances were marginal.

<u>Asbestos</u>

 Asbestos was detected in shallow fill in samples BH207_0.2-0.3, BH209_0.2-0.3 and BH201_0.2-0.3.

Other COPCs

• No OCPs, OPPs or PCBs were detected in any fill or natural soil sample.

8.3 Groundwater Characterisation

Three groundwater monitoring wells (BH201M, BH202M and BH205M) were installed in accessible locations at the site during the DSI (**Figure 2** and **Appendix A**). Based on the GME data:

- The SWL was 2.97 to 3.76 m BGL, suggesting that excavation for the proposed four-level basement (i.e. to 12-13m BGL) would intercept the local groundwater table; and
- The field data indicated that the groundwater was near neutral, saline and oxidising.,

Laboratory Results

Petroleum hydrocarbons

- Benzene was reported at low concentration in groundwater at BH202M. The adopted health based SIL was not exceeded. Xylenes were also reported at low concentration.
- Ethylbenzene and xylenes were reported at low concentration at BH201M.
- No BTEX compounds were detected at BH203M.
- Naphthalene was reported at low concentration at BH201M. No naphthalene was reported at BH202M or BH205M.
- No petroleum hydrocarbons (as TRHs) were detected in groundwater at any of the three monitoring wells.

<u>PAHs</u>

- PAHs were reported at low concentration in groundwater at BH202M.
- No reported concentrations of individual PAHs including B(a)P exceeded adopted GILs in any monitoring well.

Metals

- Chromium (total) was reported at a concentration of 120 ug/L at BH202M, which exceeded the adopted GIL for chromium as Cr (VI).
- Copper marginally exceed adopted GIL at BH201M.
- Nickel marginally exceed adopted GIL at BH205M.
- Zinc was reported in a range of 17 ug/L to 63 ug/L and exceeded adopted GIL in all wells.
- No other metals assessed in groundwater exceeded adopted GILs.

<u>Other</u>

- Total phenols were reported in groundwater at BH201M (10 ug/L). The adopted GILs were not exceeded.
- THMs were reported low concentration in BH202M. The adopted GIL was not exceeded.
- MIBK was reported in groundwater at BH102M.

Petroleum hydrocarbons and PAHs were reported at low concentration in groundwater at the site. This indicates that impact to groundwater from previous use as a service station has been negligible.

Elevated concentrations of chromium, copper and zinc were reported in groundwater. The concentration of metals in fill is low and fill is generally shallow and overlies natural clay. It is unlikely that the site is contributing to concentrations of metals reported in groundwater. The primary sources for the identified elevated heavy metal in groundwater are unknown. However, whilst the reported concentrations exceed the ANZG (2018) criteria, it is likely that the reported concentrations in groundwater represent regional groundwater quality. However, further investigation of groundwater for metals, particularly chromium, is warranted.

9. CONCLUSION

The site located at 28 Elizabeth Street, Liverpool NSW was the subject of a detailed site investigation, conducted in order to establish the nature and degree of any on-site contamination, in order to assess suitability for proposed development equivalent to a land use setting of residential with minimal opportunities for soil access.

The key findings of this DSI were as follows:

- The Site was previously used as a service station and a car park;
- The site and neighbouring properties were free of statutory notices and licensing agreements issued under the *Contaminated Land Management Act 1997* and *List of NSW Contaminated Sites Notified to the EPA.* The site was not included on the *Protection of the Environment Operations Act 1997*;
- At the time of site inspection all surface structures have been removed from the site. The site was partially paved at grade (ground level) with concrete hardstand, and unpaved areas were overgrown with weeds and grass;
- Some surface oil staining was observed within the western area of the Site;
- No ACM was observed at the surface across the site. However, fragments of potential ACM and a damaged Telstra pit were observed in a previous inspection (2 April 2019);
- Four USTs were located in situ by GPR survey at the northern area of the site near Elizabeth Street. Field inspection also identified UST fill points and bowser footings. One UST was located by GPR survey adjacent east of the former building. This indicates UPSS infrastructure remains in place;
- Intrusive investigation of soil was undertaken at 12 locations. Monitoring wells were constructed at three of these locations.
- The sub-surface comprised a layer of silty clay and sandy clay fill to 1.0m BGL, overlying natural residual clays, then weathered shale bedrock. Sand fill, to a depth of 3.5 m BGL, was identified at location BH202M located near the UST area;
- Standing water levels of groundwater ranged between 2.97 and 3.76 m BGL;
- Hydrocarbon odour was identified in sand fill at location BH202M near the UST area
- Laboratory analytical results for the representative soil samples all complied with the adopted SILs, except for:
 - The heavy metals nickel (87 mg/kg) in sample BH209_0.2-0.3 and zinc (250 mg/kg) in sample BH203_0.1-0.2 were above ecological based criteria; and
 - Asbestos was detected in shallow fill in samples BH207_0.2-0.3, BH209_0.2-0.3 and BH201_0.2-0.3.
- Laboratory analytical results for the groundwater samples all complied with the adopted GILs, except for:
 - Chromium in BH202M (120 μ g/L);
 - Copper in BH201M (120 μg/L);
 - Nickel in BH205M (13 μg/L); and
 - Zinc in BH201M (17 μg/L), BH202M (51 μg/L), and BH205M (63 μg/L).

• Petroleum hydrocarbons and PAHs were either non-detected or reported at low concentration in soil and groundwater at the site. This indicates that impact to soil and groundwater from previous use as a service station has been negligible.

The primary sources for the identified elevated heavy metal in groundwater are currently unknown. It is expected that the reported concentrations in groundwater are likely to be indicative of regional groundwater quality.

Based on the findings from this soil and groundwater field investigation which was conducted in accordance with the investigation scope agreed with the Client, and with consideration of the Statement of Limitations (**Section 11**), EI conclude that widespread contamination was not identified on the Site.

In view of the proposed development scope, and currently available information, EI consider that the Site can be made suitable for the proposed land use equivalent to a setting of residential with minimal opportunities for soil access, provided recommendations detailed in **Section 10** are implemented.

10. RECOMMENDATIONS

Based on the findings of this investigation, EI provides the following recommendations:

- Preparation and implementation of a Remedial Action Plan (RAP), which should:
 - Provide a sampling and quality plan (SAQP) for the assessment and validation of remediation activities to be performed on-site.
 - Complete one round of groundwater monitoring from existing wells to confirm the concentration of metals, particularly chromium.
 - Assess the lateral extent of asbestos impact reported in shallow fill at locations BH207, BH209 and BH210, and at the Telstra pits after removal of concrete slab and services across the Site.
 - Allow for the removal and offsite disposal of all UPSS, associated infrastructure and hydrocarbon impacted soils according to EPA (2014) Technical Note: Investigation of Service Station Sites;
 - Provide requirements for validation sampling following remediation of the UPSS area, surface oil staining area, and asbestos impacted areas identified at the site;
 - Provide an unexpected finds protocol;
 - Provide the requirements and procedures for waste classification assessment including further sampling, in order to enable classification of soils to be excavated and disposed off-site during the proposed basement excavation, in accordance with the EPA (2014) *Waste Classification Guidelines*.
- Undertake remediation and validation works for the site, as outlined in the RAP.
- Any material being imported to the Site (i.e. for landscaping or levelling purposes) should be assessed for potential contamination in accordance with NSW EPA guidelines as being suitable for the intended use or be classified as VENM; and
- Preparation of a final Site Validation Report certifying Site suitability of soils and groundwater for the proposed land use.

11. STATEMENT OF LIMITATIONS

This report has been prepared for the exclusive use of Altis Property Partners Pty Ltd, whom is the only intended beneficiary of El's work. The scope of the investigation carried out for the purpose of this report was limited to that agreed with Altis Property Partners Pty Ltd.

No other party should rely on this document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events (e.g. groundwater movement and or spillages of contaminating substances). These changes may occur subsequent to El's investigation.

EI's assessment is necessarily based upon the results of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the project proposal. Neither EI, nor any other reputable consultant, can provide unqualified warranties nor does EI assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for Altis Property Partners Pty Ltd and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

REFERENCES

Ahern CR, Stone Y and Blunden B (1998) *Acid Sulfate Soils Assessment Guidelines*, part of the *Acid Sulfate Soil Manual*, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998.

Chapman GA and Murphy CL (1989) Soil Landscapes of the Penrith 1:100 000 Sheet, Soil Conservation Service of NSW, Sydney, September 1989.

CRC CARE (2017) *Risk-Based Management and Remediation Guidance for Benzo(a)pyrene*, CRC CARE Technical Report No.39, CRC for Contamination Assessment and Remediation of the Environment, Newcastle, Australia, January 2017.

DMR (1983) *Penrith 1:100,000 Geological Series Sheet 9030*, Geological Survey of New South Wales, Department of Mineral Resources, 1983.

DPIE (2020) *eSPADE v2.0 Portal*. NSW Department of Planning, Industry and Environment (retrieved from <u>www.espade.environment.nsw.gov.au</u>).

DUAP/EPA (1998) *Managing Land Contamination. Planning Guidelines SEPP 55 - Remediation of Land.* New South Wales Department of Urban Affairs and Planning / Environment Protection Authority, August 1998.

El (2019a) Geotechnical Investigation Report, 28 Elizabeth Street, Liverpool, NSW, El report Ref. E24175.G03, 22 May 2019.

El (2019b) *Preliminary Site Investigation, 28 Elizabeth Street, Liverpool, NSW,* El report Ref. E24175.E01, 29 April 2019.

EnHealth (2005) *Management of Asbestos in the Non-Occupational Environment*, Department of Health and Ageing, Canberra, Australia.

Enrisk (2016) *Proposed Decision Tree for Prioritising Sites Potentially Contaminated with PFASs*, Environmental Risk Services Pty Ltd, Environment Protection Authority of New South Wales, 25 February 2016 (retrieved from www.epa.nsw.gov.au).

EPA (1995) *Sampling Design Guidelines*, Contaminated Sites Unit, Environment Protection Authority of New South Wales, EPA 95/59, September 1995.

EPA (2017) Contaminated Land Management: Guidelines for the NSW Site Auditor Scheme (3rd Edition), Environment Protection Authority of New South Wales, EPA 2017P0269, October 2017.

EPA (2020) Consultants Reporting on Contaminated Land: Contaminated Land Guidelines, Environment Protection Authority of New South Wales, EPA 2020P2233, April 2020.

HEPA (2020) *PFAS National Environmental Management Plan Version 2.0*, Heads of EPAs Australia and New Zealand (HEPA), National Chemicals Working Group, January 2020.

Imray P and Neville G (1993) Approaches to the Assessment and Management of Asbestos-Contaminated Soil. From the Second National Workshop on the Health Risk Assessment and Management of Contaminated Sites (1993).

Murphy CL (1997) *Acid Sulfate Soil Risk of the Liverpool Sheet* (Second Edition). Department of Land and Water Conservation, Sydney (supplied by the Sydney South Coast, Geographical Information Systems Unit).

NEMP (2020) *PFAS National Environmental Management Plan*, National Chemicals Working Group of the Heads of the EPAs Australia and New Zealand (HEPA), January 2020.

NEPC (1999) National Environmental Protection (Assessment of Site Contamination) Measure 1999. National Environmental Protection Council, December 1999.

NEPC (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on Site-Specific Health Risk Assessments, from the National Environment Protection (Assessment of Site Contamination) Amendment Measure, National Environment Protection Council, April 2013.

Standards Australia (2005) Table E1 - Minimum Sampling Points Required for Site Characterisation, in Australian Standard AS4482.1-2005 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil - Part 1: Non-volatile and Semi-volatile Compounds, Standards Australia 2005.

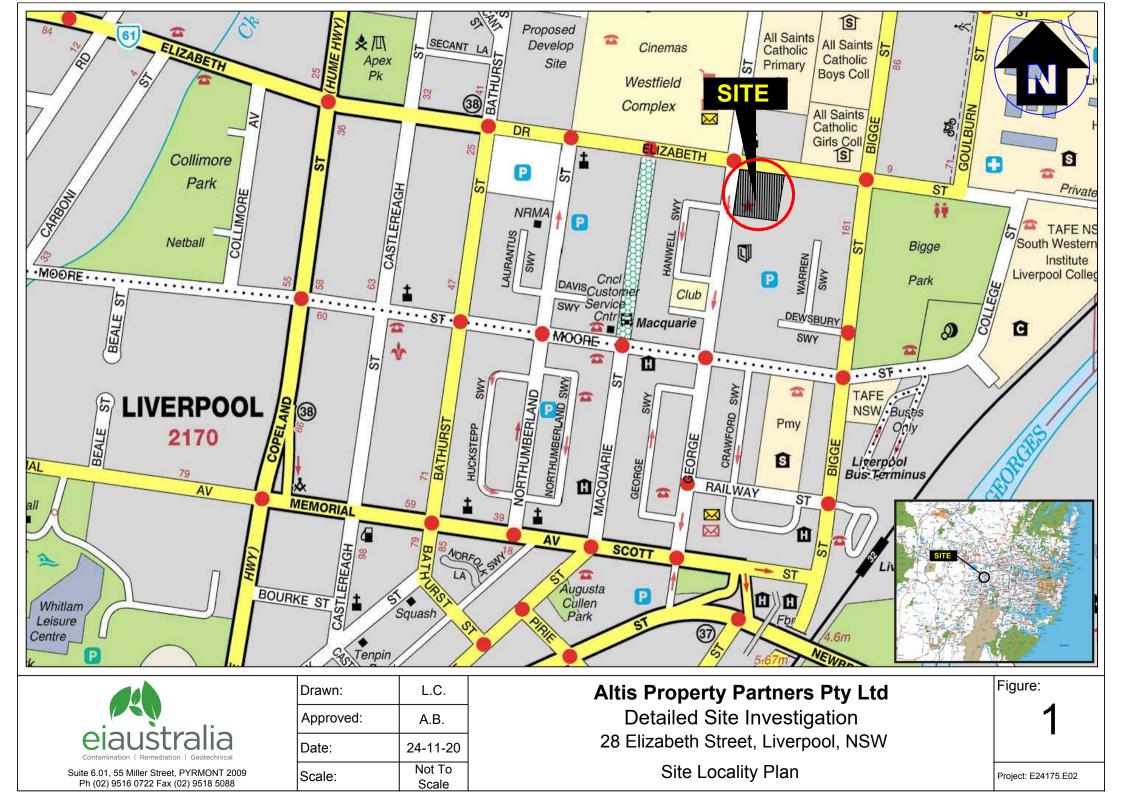
USEPA (2000a) *Guidance for the Data Quality Objectives Process - EPA QA/G-4*, United States Environmental Protection Agency, EPA/600/R-96/055, August 2000.

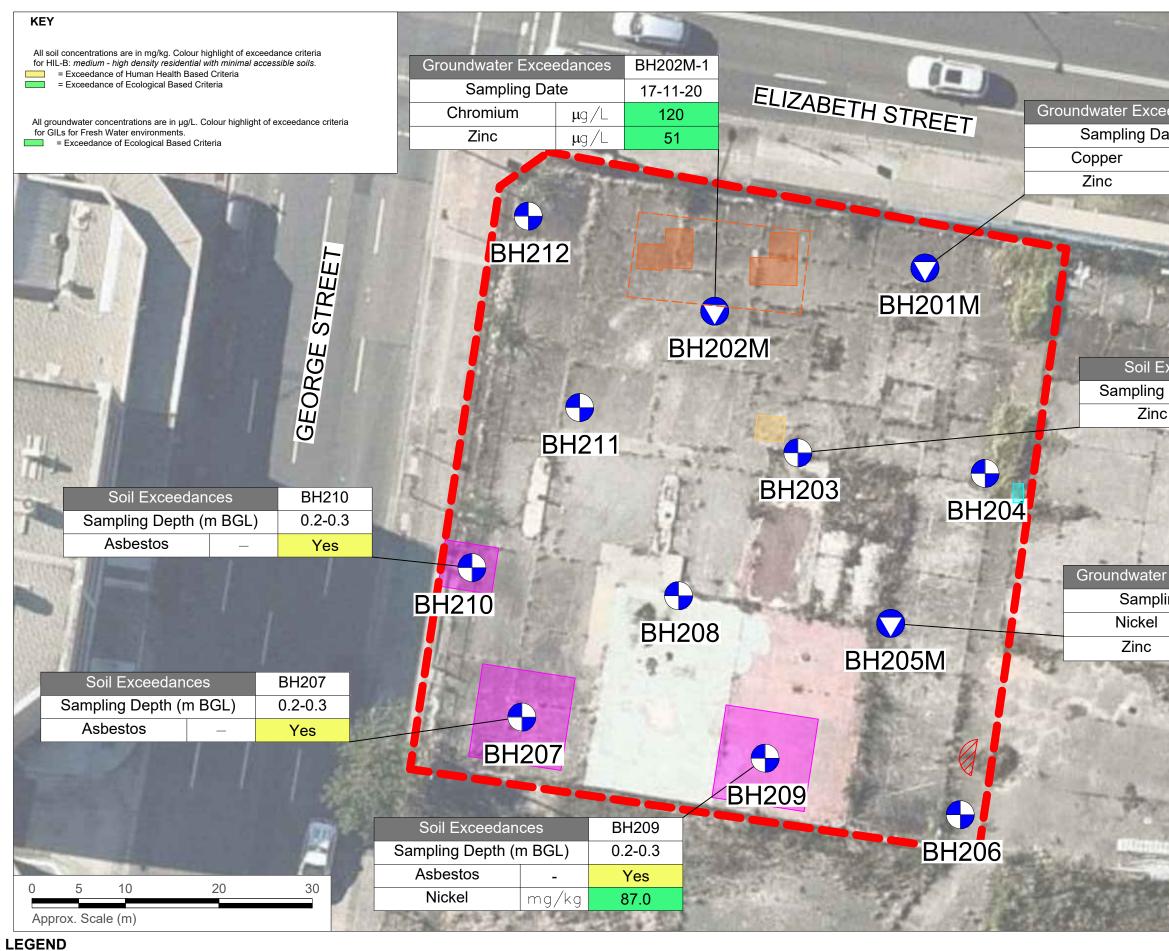
USEPA (2000b) Data Quality Objectives Process for Hazardous Waste Site Investigations - *EPA QA/G-4HW*, United States Environmental Protection Agency, EPA/600/R-00/007, January 2000.

USEPA (2006) Data Quality Assessment: A Reviewers Guide - EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.

WADOH (2009) *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia,* Published by the Western Australian Department of Health, May 2009.

ABBREVIATIONS


ACM AHD ASS AST B(α)P BGL BH BTEX CCO COPC COPC CSM CVOC DA DBYD DCP DP DSI EC EI EIL EMP EPA ESL F1 F2 FCS GIL HDPE HIL HSL km LEP LGA LOR m N/A NATA NEPC NEPM NSW OCP OPP PAH PCB PFAS	Asbestos-Containing Materials Australian Height Datum Acid Sulfate Soils Above-ground Storage Tank Benzo(q)Pyrene (a PAH compound) Below Ground Level Borehole Benzene, Toluene, Ethylbenzene, Xylenes Chemical Control Order Chain of Custody Contaminants of Potential Concern Conceptual Site Model Chlorinated Volatile Organic Compounds (a sub-set of the VOC suite) Development Application Dial Before You Dig Development Control Plan Detailed Site Investigation Electrical Conductivity El Australia Ecological Investigation Level Environmental Management Plan Environment Protection Authority (of New South Wales) Ecological Screening Level Ge-Cu ₀ TRH (less the concentrations) >Cu ₀ -Cu ₀ TRH (less the concentration of naphthalene) Fibre Cement Sheeting Groundwater Investigation Level High Density Polyethylene Health-based Investigation Level Health-based Screening Level Kilometres Local Government Protection Group of respective laboratory method) Metres National Association of Testing Authorities, Australia National Environment Protection Council National Environment Protection Measure New South Wales Organohosphate Pesticides Polycyclic Aromatic Hydrocarbons Polycholiniated Biphenyls Per- and Poly- Fluroalkyl Substances
opp	Organophosphate Pesticides
Pah	Polycyclic Aromatic Hydrocarbons
PFAS	Per- and Poly- Fluroalkyl Substances
pH	Potential Hydrogen (a measure of the acidity or basicity of an aqueous solution)
PQL	Practical Quantitation Limit (limit of detection for respective laboratory method)
PSH	Phase-Separated Hydrocarbons
PSI	Preliminary Site Investigation



- QA/QC **Quality Assurance / Quality Control** RAP Remediation Action Plan **Relative Level** RL Stored Chemical Information Database (maintained by SafeWork NSW) SCID SIL Soil Investigation Level SOP Standard Operating Procedure Sample Receipt Advice (document confirming laboratory receipt of samples) SRA SWL Standing Water Level TCLP **Toxicity Characteristics Leaching Procedure** TEQ **Toxicity Equivalent Quotient** TPH Total Petroleum Hydrocarbons (superseded term equivalent to TRH) TRH Total Recoverable Hydrocarbons (non-specific analysis of organic compounds) UCL Upper Confidence Limit (of the mean) UPSS Underground Petroleum Storage System USEPA United States Environmental Protection Agency UST **Underground Storage Tank**
- VENM Virgin Excavated Natural Material
- VOC Volatile Organic Compounds (specific organic compounds which are volatile)

Appendix A - Figures

 Site boundary
 UST farm area identified using GPR Survey

Borehole location

 \bigcirc \bigcirc Borehole/monitoring well location

The second Area with Asbestos

Constanting of the second USTs location (by GPR survey)

Waste oil UST location

Location of oil staining NOTE:Sample locations, features and site boundary are approximate.

Broken Telstra pit location

eiaustralia Suite 6.01, 55 Miller Street, PYRMONT 2009 Ph (02) 9516 0722 Fax (02) 9518 5088

N.G./ Drawn: AM.H. Approved: G.B. 7/12/20 Date:

	1	No. of Street, or other	and the second	211-31	A Long		4		14
edance	es	BH20	01M-1						
ate			1-20	1000		-	-		
-	/1		4						1
µg/			+ 7	1.34	-	_			1
µg/	2617	1	1	Same	1				
		1000	are	-	3	63P			
100		ale ale				100	1	and and	
Constant of the	(Phi	-		Transfer	9		18	See	
all she	1	-	-	-	-	Adam			-
1				Para		1	ŔŻ	in the second	1
antr		(The s	35-4	1000					10
	51	-1.00	his			140		80	
xceeda	ance	s	Bł	H203			6e	853	
Depth			0.	1-0.2		190		50	2
י <u>י</u> כ		ng/kg		250		120		63	
	-	ig/ kg) ·	_00	670	5	10	200	1
	6.54	2.29				2		1	-
19	177					100			28
6 3		5. 5	955	100	٩	See.			-
1.	1.90	1973				122	12		1.
1214		Sec.	15 h			Can	Ú.		
122	-00	632	1000	263		17			52
r Excee	edan	ces	BH208	5M-1			E	2-8.1	1
ing Dat	e		17-11	-20	1	10		-	15-
	μg	/L	13	5		200		1	
	μg	1	63			Sec.		19	
Sec.	•)	/	10.024		20	37.	ġ.,	13	18
2305		1222	and the second	6	4	63	10	1.00	
		29	E His	10	9	24		10	
		N.		23	1		2.00	LΒ	5
1360	123	194	1	2-61	8	3.9	200		12
- 4 M	8		161.1		8	2.00		85.	10
			1. 10		8	Sugar		10	677
		19-4	1.0	128	1			下方	52
25-5-		6	1.7.12	12.43		Sec.	200	188	3ª
sould be	13	E	1022	1973	1	-	al the	44	33
1012.44	25	1		1	2	1			\$1
E STA	E.S.	CON	TTUNIN.	0.14	0	10	23	1.51	24.
	1.36	She ?	Map So	urce: Ne	arma	ap, Date	d on: C	1/10/20	020

Altis Property Partners Pty Ltd Detailed Site Investigation 28 Elizabeth Street, Liverpool NSW Sampling Location Plan - Exceedances Figure:

Project: E24175.E02

Appendix B - Tables

Table T1 - All	ble T1 - All Laboratory Results																														
Batch Number	Sample Date	Sample ID_Sample Depth	Soil Type	As	Cd	Cr	Cu	РЬ	TCLP (Pb) mg/kg	Hg	Ni	TCLP (Ni) mg/kg	Zn	Carcin ogenic PAHs (as B(q)P TEQ)	Benzo(a)pyrene	TCLP (B[o]P) mg/kg	Total PAH	Naphthalene	Benzene	Toluene	Ethylbenzane	Total Xylenes	F1	F2	F3	F4	C _e -C _s	C _{s7} −C ₃₈	Total OC Ps	Total OPPs	
		BH201M_0.5-0.6	Fill	8	<0.3	17.0	13	16	N.A.	0.12	4.3	N.A.	17	<0.3	0.10	NA.	1.30	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	_
		BH201M_1.2-1.3	Natural	8	<0.3	11.0	12	11	N.A.	<0.05	2.7	N.A.	9	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	1
		BH202M_0.4-0.5	Fill	2	<0.3	2.5	2	8	N.A.	<0.05	1.0	N.A.	16	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	-
		BH202M_2.4-2.5	Fill	N.A.	N.A.	N.A.	N.A.	3	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	-
		BH202M_3.9-4.0	Natural	<1	<0.3	0.7	7	4	N.A.	<0.05	0.9	N.A.	3	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	-
		BH203_0.1-0.2	Fill	7	<0.3	17.0	30	160	N.A.	0.70	8.0	N.A.	250	0.40	0.20	N.A.	3.00	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	-
		BH203_0.6-0.7	Natural	4	<0.3	9.6	8	10	N.A.	<0.05	4.6	N.A.	7	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	
		BH204_0.2-0.3	Fill	6	<0.3	12.0	15	75	N.A.	0.31	6.3	N.A.	84	<0.3	<0.1	N.A.	1.10	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	L
		BH205M_0.2-0.3	Fill	7	<0.3	17.0	6	17	N.A.	<0.05	3.2	N.A.	12	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	L
		BH205M_1.3-1.4	Natural	9	<0.3	15.0	9	12	N.A.	<0.05	1.6	N.A.	11	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	
SE213398	9/11/2020	BH206_0.2-0.3	Fill	6	<0.3	13.0	14	43	N.A.	0.20	8.3	N.A.	58	0.80	0.50	N.A.	6.30	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	-
		BH206_0.6-0.7	Natural	4	<0.3	11.0	7	9	N.A.	<0.05	3.4	N.A.	9	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	<u> </u>
		BH207_0.2-0.3	Fill	4	<0.3	8.7	10	49	N.A.	0.28	3.9	N.A.	42	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	-
		BH207_0.9-1.0	Natural	7	<0.3	10.0	8	10	N.A.	<0.05	0.9	N.A.	7	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	
		BH208_0.2-0.3	Fill	6	<0.3	14.0	28	170	<0.02	0.29	7.7	N.A.	170	1.20	0.80	<0.0001	10.00	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	⊢
		BH209_0.2-0.3	Fill	8	<0.3	80.0	29	24	N.A.	0.05	87.0	0.047	94	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	⊢
		BH210_0.2-0.3	Fill	6	<0.3	14.0	35	180	0.08	0.32	8.1	N.A.	240	1.90	1.30	<0.0001	22.00	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	160	<120	<20	180	<1	<1.7	⊢
		BH211_0.2-0.3	Fill	4	<0.3	5.3	5	41	N.A.	0.10	3.1	N.A.	65	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	
		BH211_0.8-0.9	Natural	4	<0.3	12.0	9	8	N.A.	<0.05	2.7	N.A.	11	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	N.A.	N.A.	<u> </u>
		BH212_0.2-0.3	Fill	5	<0.3	9.0	8	25	N.A.	0.05	4.5	N.A.	20	<0.3	<0.1	N.A.	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	<20	<110	<1	<1.7	—
		QD1	Fill	4	<0.3	15.0	10 35	13 180	N.A. <0.02	<0.05	3.0 87	N.A. 0.047	11	N.A. 1.90	N.A.	N.A.	N.A. 22.0	<0.1	<0.1	<0.1	<0.1	<0.3	-25 -25	-25	-90	<120	<20	<110 180	N.A.	N.A.	<u> </u>
Stats	M	aximum Concentration	(mg/kg)	N.A.	N.A.	N.A.	N.A.	100	N.A.	0.70 N.A.	74.51	0.047 N.A.	250	1.90 N.A.	1.30	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	NA.	<20 N.A.	N.A.	<120 N.A.	<20 N.A.	N.A.	<1 N.A.	<1.7 N.A.	
						500			100			1676				100		SIL			nor.				100	100		100			Ē
		B - Residential mmercial / Industrial		500	150	Cr(VI) 3,600	30,000 240,000	1,200		120 730	1200		60,000 400,000	4.00			400 4000												600 3,600		<u> </u>
		HSL B - Residential				Cr(VI)			Sour	ce depths (0 m to	<1 m. BGL) <2 m. BGL)							3.00 NL	0.5	160 220	55 NL	40 60	45 70	110 240	-					J	
	Soil texture	classification -Sand 1							Sou	rce depths (2m to - Source depths (4	c4m. BGL) m+)							NL	0.5	310 540	NL NL	95 170	110 200	440 NL							
		ommercial / Industrial classification –Sand ¹							Sour Sour	ce depths (0 m to ce depths (1 m to ce depths (2m to Source depths (4	<1 m. BGL) <2 m. BGL)							NL NL	3	NL NL	NL NL	230 NL	260 370 630	NL NL	4						
				100					300	Source depths (4							1	NL	3	NL	NL	NL	NL	NL NL 120	300	2800	1				
		L - Residential ^{1,4}	P	100		200	110	1,100			35		250	I	33 5		I	170	50	85	70	105	180								
Managen		rained soil texture ¹	wc open space																				700	1,000	3,500	10,000					
Asbestos c	ontamination HSL - Bonde	- B Residential with mir ed ACM (%w/w)	nimal soil access																												
Asb	estos contamination	HSL – D Commercial	Industrial																												
Asbestos co		r Non Bonded / Friable	Asbestos (%w/w)																												
	NSV	N EPA 2014 2		100	20	100		1	100	4		40		1		0.80	200	Waste Classifica	tion Criteria 10	288	600	1,000					650	10,000		<50	
	Gener	ral Solid Waste W EPA 2014 3		5.0 / 500 400	1.0 / 100 80	400	1	5/	1,500 400	0.2/50		1,050 60.0				04/10 3.20	NA / 200 800]	0.5 / 18 40	14.4/518	30 / 1,080 2.400	4.000	1				2.600	NR / 10,000 40.000		NR / <50 NR / <50	_
Netes		ted Solid Waste	othonuloo ct-tth	20 / 2,000	4 / 400	20/7,600		20/	6,000	0.8 / 200	8/	4,200		1	0.1	16/23	NA / 800		2/72	57.6 / 2,073	120 / 4,320	200/7,200					NA / 2,600	NA / 40,000		NR / <50	
Notes:	Exceeds EILs/ESL	orded in mg/kg (unless Ls criteria																													
	Exceeds adopted Criteria Exceeded NSW EPA Waste	HIL/HSL and NSW EP/	A Waste Criteria for G	eneral Solid Waste CT1																											
- 1 2 3 4 5 AMO CRY CRO	The sample was not analysed of the indicated parameter. Cases of Galaxied coll locars values were applied, here the most containvise of the material parameter. Cases of Galaxied coll locars values were applied, here the soft set of Cases Tables (CT2) and Table 2 (TC2)PSDCC1) NVE FEA OVIC (Addendue). Cocket and Zinc results are based on NEPC Ecological Investigation Level calculation spreadheet with HHS California (Tables 2 (TC2)PSDCC2) EL derivation for Cooper, Nickel and Zinc results are based on NEPC Ecological Investigation Level calculation spreadheet with HHS California (Tables 2 (TC2)PSDCC2) EL derivation for Cooper, Nickel and Zinc results are based on NEPC Ecological Investigation Level calculation spreadheet with HHS California (Tables 2 (TC2)PSDCC2) EL derivation for Cooper, Nickel and Zinc results are based on NEPC Ecological Investigation Level calculation spreadheet with HHS California (Tables 2 (TC2)PSDCC2) EL derivation for Cooper, Nickel and Zinc results are based on NEPC Ecological Investigation Level calculation spreadheet with HHS California (Tables 2 (TC2)PSDCC2) EL derivation for Cooper, Nickel and Zinc results are based on NEPC Ecological Investigation Level calculation spreadheet with HHS California (Tables 2 (TC2)PSDCC2) EL derivation (Tables 2 (TC2)PSDC2) EL derivation (TC2)PSDC2) E																														

 City
 Chrysottle

 CRV
 Codddate

 CRD
 Codddate

 HLB
 NEPC 1996 Antenninest 2013 THL D Health Based Investigation Levels applicable for residential descurs serings with initial oponumities for soil access.

 HLB
 NEPC 1996 Antenninest 2013 THL D Health Based Investigation Levels based on vapour initialinum serings applicable for bow-medium density residential state.

 HSL A B
 NEPC 1996 Antenninest 2013 THL D Health Based Screening Levels based on vapour initiation values applicable for commercial / industrial state.

 HSL D
 NEPC 1996 Antendment 2013 THLS D Health Based Screening Levels based on vapour initiation values applicable for commercial / industrial state.

 F1
 THH -CS-1016 Bias raphtiteface.

 F2
 THH -CS-1016 Bias raphtiteface.

 F3
 THH -CS-4016

 NA
 Not Analysed

 NL
 Not Analysed

 NL
 Not Initing: The contaminant cannot exceed the maximum allowable vapour risk due to its specific chemical actualitie (initial state)

Total PCBs	Asbestos dectected (yes/no)	Fibre Type
<1	No	-
N.A.	N.A.	-
<1	No	-
N.A.	N.A.	-
N.A.	N.A.	-
<1	No	-
N.A.	N.A.	-
<1	No	-
<1	No	-
N.A.	N.A.	-
<1	No	-
N.A.	N.A.	-
<1	Yes	Amosite and Chrysottile Asbestos found in approx 10x6x3mm cement sheet fragments
N.A.	N.A.	-
<1	No	·
<1	Yes	Chrysotile Asbestos found in approx 10x5x3mm cement sheet fragment
<1	Yes	Chrysotile Asbestos found in approx 25x10x4mm cement sheet fragments
<1	No	-
N.A.	N.A.	-
<1	No	-
N.A.	N.A.	-
<1	Yes	N.A.
N.A.	N.A.	N.A.
1		
7		
		If detected material is Special Waste - Asbestos Waste

Table T1 - Groundwater Analytical Da

Table T1 - 0	Groundwater Analytical Da	ata					Metals								PA	He						BTEX				т	RHs				VC	Cs		E24	- 175.E02 Oth	Liverpool
Sa	mple Identification	Date	AI	As	Cd	Cr	Cu	РЬ	Ni	Zn	Hg	Naphthalene	2-methyInaphthalene	1-methylnaphthalene	Acenaphthylene	Acenaphthene	Phenanthrene	Benzo(a)pyrene	Total PAH ⁷	Benzene	Toluene	Ethylbenzene	o-xylene	m + p-xylene	F1	F2	F3	F4	Naphthalene	Carbon disulfide	Chloroform (THM)	Bromodichloromethane (THM)	MIBK (4-methyl-2- pentanone)	Total VOCs 7	Total Phenols	рн
Groundwate	r Investigation (EI, 2020)							•	1							I							•	1									l l			
	BH201M-1		18	1	<0.1	<1	4	<1	7	17	<0.1	0.2	0.3	0.2	<0.1	<0.1	0.1	<0.1	<1	< 0.5	<0.5	0.7	0.5	1	<50	<60	<500	<500	0.6	<2	2.1	<0.5	36	39	10	6.96
	BH202M-1	17/11/2020	17	1	<0.1	120	1	<1	5	51	<0.1	<0.1	<0.1	0.2	<0.1	0.9	0.1	<0.1	2	1.0	< 0.5	<0.5	1.1	2	<50	<60	<500	<500	<0.5	2	<0.5	2.5	<5	27	<10	7.61
	BH205M-1		10	3	0.1	<1	<1	<1	13	63	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.5	< 0.5	<0.5	< 0.5	<1	<50	<60	<500	<500	<0.5	<2	<0.5	<0.5	<5	<10		6.59
	BH200_GWQD1		N.A.	3	0.1	<1	<1	<1	13	54	<0.1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
	Maximum		18	3	0.1	120	4	<1	13	63	<0.1	0.2	0.3	0.2	<0.1	0.9	0.1	<0.1	2	1.0	<0.5	0.7	1.1	2	<50	<60	<500	<500	0.6	2.0	2.1	2.5	36.0	39.0	10	8
	Minimum		10	1	<0.1	<1	<1	<1	5	17	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<0.5	<2	<0.5	<0.5	<5	<10	10	7
Guidelines	HSL D ¹ Commercial/Industrial	al .																		3	NL	NL	Ν	il.	NL	NL										
ANZG	Marine Wa	ater ²			5.5	27.4 (CrIII) ⁴ 4.4 (CrVI)	1.3	4.4	70	15	0.4	70					0.6 ⁵	0.1 ⁵		700	180	5	350	275	50 ⁶	60 ⁶	500 ⁶	500 ⁶			370				400	7.0-8.5
(2018)		iter ²	55	24 (As III) 13 (As V)	0.2	3.3 (CrIII) ⁴ 0.4 (CrVI)	1.4	3.4	11	8	0.6	16					0.0	0.1		950	180	80	550	215	50	00	500	500		20	370				320	6.5-8.5
NMHRC	Drinking Wa	ater ^{3a}	2,000*	10	2	50 ⁴	1,000 *	10	20	3,000*	1							0.01		1	25*	3*	20 *	20 *							2	50				6.5-8.5
(2011) ³	Recreational	Water ^{3b}	2,000*	100	20	500 ⁴	1,000 *	100	200	3,000*	10							0.1		10	25*	3*	20 *	20 *							2,5	600				

Notes: All values are µg/L unless stated otherwise F1 C6-C10 minus BTEX

F2 >C10-C16 minus naphthalene (>C16-C34)

F3

F4 (>C34-C40) NA = 'Not Analysed' i.e. the sample was not analysed. PAH = Polycyclic Aromatic Hydrocarbons

TRH = Total Recoverable Hydrocarbons

¹ Based on NEPM (2013) Groundwater Health Screening Values for vapour intrusion - Table 1A(4) - Sand, for 4m+

⁶ Based on NEPM (2013) Groundwater Health Screening Values for vapour infrusion - Table 1A(4) - Stand, for 4m+
 ⁷ Groundwater Health Screening Values for fresh, marine, based on ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia, August 2018
 ³ Based on NHMRC (2011 - update August 2018 v3.5.5) Drinking Water Guidelines. The lowest of the Health Guideline or the Aesthetic Guideline has been chosen as the assessment criteria. Aesthetic based criteria have been indicated by *
 ^{3a} The lowest of the Health Guideline v10 or the Aesthetic Guideline has been chosen as the assessment criteria. Aesthetic based criteria have been indicated by *
 ^{3a} The lowest of the Health Guideline v10 or the Aesthetic Guideline has been chosen as the assessment criteria. Aesthetic based criteria have been indicated by *
 ⁴ If site history indicates potential for presence of Cr(VI) - then use 4.4 (marrine), 0.4 (freshwater), 50 (drinking water NHRMC), 500 (rec water NHRMC)
 ⁶ To account for the bioaccountulating nature of this toxicant, the 99% species protection level DGV is used for slightly to moderately disturbed systems.
 ⁶ In lack of a criteria the laboratory POL has been used (DEC, 2007).

⁷Where value is <PQL, it indicates all other tested analytes were below PQL.

Highlighted indicates ecological criteria exceeded Highlighted indicates recreational water criteria exceeded Highlighted indicates criteria exceeded

Table B-3 Summary of QA/QC Results for Soil Investigation Samples

28 Elizabeth Street, Liverpool Site: Job No: E24175

				TI	RH			BT	EX					Heavy	Metals			
Date	Sample Identification	Description	F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laborate	ory Duplicate																	
9-Nov-20	BH201M_0.5-0.6	Primary Soil Sample	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	8	<0.3	17	13	16	0.12	4.3	17
9-Nov-20	QD1	Intra-laboratory Duplicate	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	4	<0.3	15	9.6	13	<0.05	3	11
	RP	D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	66.67	0.00	12.50	30.09	20.69	96.55	35.62	42.86
Inter-laborate	ory Duplicate		-	-	-					-								
9-Nov-20	BH101_0.1-0.2	Primary Soil Sample	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	<1	<0.3	2.4	15	47	0.28	1.1	71
9-Nov-20	QT1	Inter-laboratory Duplicate	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<4	<0.4	3	25	73	0.3	2	150
RPD				NA	NA	NA	NA	NA	NA	NA	NA	NA	22.22	50.00	43.33	6.90	58.06	71.49
Trip Blanks																		
9-Nov-20	QTB1	Trip Blank	-	-	-	-	<0.1	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
Rinsate Blan																		
9-Nov-20	QR1	De-ionised Water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5

52.17 Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit.

82.35 RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE: All soil results are reported in mg/kg . All water results are reported in µg/L.

F1 = TRH C6-C10 less the sum of BTEX

F2 = TRH >C10-C16 less naphthalene

F3 = TRH >C16-C34

F2 = TRH >C34-C40

¹ Value shown is the lowest recovery value reported for xylenes

Table B-4 Summary of QA/QC Results for Groundwater Samples

Site: 28 Elizabeth Street, Liverpool **Job No:** E24175

				T	RH			BT	ΈX					Heavy	Metals			
Date	Sample Identification	Description	F1	F2	F3	F4	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
	ory Duplicate		-	-	-	-			-	-		-		-	-		-	
17/11/2020	BH205M-1	Primary Groundwater Sample	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	3	0.1	<1	<1	<1	<0.1	13	63
17/11/2020	BH200_GWQD1	Intra-laboratory Duplicate	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	3	0.1	<1	<1	<1	<0.1	13	54
	RPD		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.38
Inter-laborate	ory Duplicate		-	-	-	-								-	-			-
17/11/2020	BH205M-1	Primary Groundwater Sample	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	3	0.1	<1	<1	<1	<0.1	13	63
17/11/2020	BH200_GWQT1	Inter-laboratory Duplicate	<10	<50	<100	<100	<1	<1	<1	<3	4	0.1	<1	<1	<1	< 0.05	15	80
	RPD		NA	NA	NA	NA	NA	NA	NA	NA	28.57	0.00	0.00	0.00	0.00	NA	14.29	23.78
Trip Blanks		•			•										•			
17/11/2020	GWQTB1	Trip Blank	-	-	-	-	<0.5	<0.5	<0.5	<1.5	-	-	-	-	-	-	-	-
17/11/2020	GWQTS1	Trip Spike	-	-	-	-	[102%]	[102%]	[102%]	[100%]	-	-	-	-	-	-	-	-
Rinsate Blan		I																
17/11/2020	GWQR1	De-ionised Water	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.1	<1	<5

52.17 Indicates values where a single result is found to be less than detection, with the duplicate sample found to be over the detection limit. 82.35

RPD exceeds 30-50% range referenced from AS4482.1 (2005)

NOTE: All water results are reported in µg/L.

F1 = TRH C6-C10 less the sum of BTEX

F2 = TRH >C10-C16 less naphthalene

F3 = TRH >C16-C34

F2 = TRH >C34-C40

¹ Value shown is the lowest recovery value reported for xylenes

Appendix C – Site Photographs

Photograph 1: General site condition (9/11/2020).

Photograph 2: Oil stain within the south-east corner of the site (9/11/2020).

Photograph 3: UST area north part of site near Elizabeth Street (9/11/2020).

Appendix D – Borehole Logs

BOREHOLE: BH201M

Sheet

Project	Detailed Site Investigation
Location	28 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E24175.E02
Client	Altis Property Partners Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin DB8 -90°

Date Started	9/11/20
Date Completed	9/11/20
Logged SL	Date:9/11/20
Checked	Date:

1 OF 1

Inclination C Drilling Sampling **Field Material Description** PIEZOMETER DETAILS PENETRATION RESISTANCE JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY <u>ID St</u> BH201M RECOVERED SAMPLE OR FIELD TEST GRAPHIC LOG SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) 1201M DEPTH RL 0 ₽. .≬ CONCRETE; 200 mm thick. 0.20 FILL: Silty CLAY; medium to high plasticity, dark brown, with trace of sub-angular to angular gravels, no odour. BH201M_0.5-0.6 QA/QC М PID = 1.9 ppm 0.90 CI-CH Silty CLAY; medium to high plasticity, orange mottled red, no odour. 1 BH201M_1.2-1.3 ES x PID = 1 ppm 2 Grout 3.00 Μ 3 From 3.0 m, red-brown, no odour. Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Pij: EIA 1.03 2014-07-05 4.00 4 From 4.0 m, pale brown, no odour. AD/T x 5.00 5 SHALE; pale brown, moderately weathered, no odour. Bentonite uPVC 50 mm Casing 6 10 0 000 9/11/20 26/11/2020 09:35 D 7 Sand << DrawingFile>> uPVC 50 mm 8 F24175 F02 RORFH01 F LOGS GP.I Screen 9.00 Borehole Terminated at 9.00 mBGL; Target Depth Reached. 01E 3 0 S 10 FIA LIR 1 03 GLB This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

Project Detailed Site Investigation

BOREHOLE: BH202M

	Contamir	nation F	Sciemediation	Geotechnic	al		lizabeth r to Fig		et, Liverpool NSW				Sheet Date Started	1 OF 1 9/11/20	
							75.E02		Contractor Geosense Dri	lling P	ty Ltd		Date Completed	9/11/20	
					Client	Altis	Proper	ty Pa	rtners Pty Ltd Drill Rig Hanjin DB8				ogged SL	Date:9/11/20	
									Inclination -90°			C	Checked	Date:	_
		_	lling		Sampling				Field Material Des		1	_			
METHOD	PENETRATION	WATER	DEPTH (metres)	DERTH	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	DISTURE NDITION		PI ID Static BH202M	EZOMETER DE	TAILS	
M	믭뷥	ž ž		DEPTH RL		RE		SN		Σü			<u> </u>		
			0	0.20			0.14 4.4	-	CONCRETE; 200 mm thick.	-	-				
AD/T					BH202M_0.4-0.5 ES PID = 12.7 ppm BH202M_0.9-1.0 ES PID = 10.2 ppm BH202M_1.4-1.5 ES PID = 15.4 ppm BH202M_1.9-2.0 ES PID = 17.6 ppm BH202M_2.4-2.5 ES PID = 19.1 ppm BH202M_2.9-3.0 ES PID = 14.3 ppm				FILL: SAND; fine grained, dark grey, with slight hydrocarbon odour.	w	- - -			Grout	
Tool - DGD LID: EIA 1.03 2014-07-05 Pg: EIA 1.03 2014-07-05	-		- - 4 - - 5	<u>3.50</u> 5.00	BH202M_3.4-3.5 ES PID = 18.2 ppm BH202M_3.9-4.0 ES PID = 3.4 ppm			CI- CH	Silty CLAY; medium to high plasticity, grey, no odour.	M					
EA LIB 103 GL Log IS AU BOREHOLE 3 E2475 E02 BOREHOLE LOGS GPJ <cd0mmgfie>> 257172020 0935 10.0.000 Dagel Lab and In Stu Tod - DGD Lib: EI NMI C</cd0mmgfie>										м				Bentonite IPVC 50 mm Casing	
19 19 AU BURETOLE & E41/19:E42 BURETOLE LCGG. G14 11			8	9.40					Borehole Terminated at 9.40 mBGL; Target Depth Reached.					IPVC 50 mm Screen	
EIA LIB 1.03.0Lb LL			10-		This boreh	ole lo	g shou	ıld be	read in conjunction with EI Australia's accompanying st	andaro	d notes	S.			

BOREHOLE: BH203

Project	Detailed Site Investigation
Location	28 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E24175.E02
Client	Altis Property Partners Pty Ltd

Contractor -Drill Rig Hand Auger Inclination -90°

Drilling						Sampling Field Material Description								
	METHOD	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
ŀ				0 —		BH203_0.1-0.2 ES			-	ASPHALT; 50 mm thick.		<u></u>	ASPHALT FILL	
	ЧA	-	GWNE	-		PID = 2.4 ppm		X	-	FILL: Silty CLAY; medium to high plasticity, dark brown, with trace of sub-angular to angular gravels, no odour.	м	-		
			Ū	-	0.50 0.70	BH203_0.6-0.7 ES		××.	CI-	Silty CLAY; medium to high plasticity, orange mottled red, no	м	-	RESIDUAL SOIL	
ľ				-	0.70	PID = 0.3 ppm		`	СН	odour. Borehole Terminated at 0.70 mBGL				
				1 —						Borehole Terminated at 0.70 mBGL; Target Depth Reached.				-
				-										
				_										
				_										
				2—										-
				-										
				-										
				-										
				3—										-
				-										
				-										
5				-										
14-07-0				4 —										_
1.03 20				-										
Prj: EIA				-										
4-07-05				-										
03 2014				5										
b: EIA 1				-										
GD LLI				-										
Tool - E				-										
d In Situ				6										
Lab and				-										
Datgel				-										
0.0.000				-										
10:32 1				7										
11/2020				-										
· 19/				-										
wingFilt				-										.
J < <dra< td=""><td></td><td></td><td></td><td>- 8</td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> ·</td></dra<>				- 8										·
GS. GP.				0 -										
OLE LC				-										
BOREH				-										
75.E02				-										
3 E241				9										-
EHOLE				-										
NU BOR				-										
og IS A				-										
El U B 103 GLB Log IS AU BOREHOLE 3 E24175 E02 BOREHOLE LOGS GPJ <-OmwingFas> 19112020 10.32 10.0000 Bangai Lab and In Stu Tod - DGD LIb: EA 103 2014-0745 F9; EI A 103 2014-0745		•		10 —		This horeho		a shoi	ild he	e read in conjunction with EI Australia's accompanying sta	ndar	d not	Tes.	•
LIB 1.0.								3 0100				3 101		
ΕIΑ														

BOREHOLE: BH204

Project	Detailed Site Investigation
Location	28 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E24175.E02
Client	Altis Property Partners Pty Ltd

Contractor -Drill Rig Hand Auger Inclination -90°

Drilling				ling		Sampling Field Material Description								—
	MEIHOU	PENETRATION RESISTANCE		DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F				0 —	0.10					CONCRETE; 100 mm thick.	<u> </u>	-	CONCRETE HARDSTAND	T
	-		빌	-		BH204_0.2-0.3 ES		\mathbb{X}	-	FILL: Silty CLAY; medium to high plasticity, dark brown, with trace of sub-angular to angular gravels, no odour.	м	-	FILL	T .
	A	-	GWNE	-	0.60	PID = 2.4 ppm		\mathbb{K}]					
					0.80	BH204_0.7-0.8 ES		×	CI- CH	Silty CLAY; medium to high plasticity, orange mottled red, no odour.	М	-	RESIDUAL SOIL	
				1		PID = 1.6 ppm				Borehole Terminated at 0.80 mBGL:	1			-
				-						Target Depth Reached.				
				-										
				-										
				-										
				2—										-
				-										
				_										
				-										
				3—										-
				-										
				-										
				-										
4-07-05				-										
03 201				4										
: EIA 1.				-										
-05 Prj				-										
2014-07				-										
A 1.03				5 —										-
Lib: El				-										
DGD				-										
u Tool				-										
d In Sit				6—										_
Lab ar				-										
Datge				-										
0.0.000				-										
0:32 1				-										
/2020 1				7										-
> 19/1				-										
ngFile>:				-										
C <drawi< p=""></drawi<>				-										.
GPJ <				8—										-
E LOGS				-										'
EHOLE				-										'
02 BOR				-										
4175.E(9 —										_
E 3 E2				-										.
RHOLL				-										.
AU BOF				-										.
O IS /				-										
EA LIB 1.03 GLB Log IS AUBOREHOLE 3 E24175.E02 BOREHOLE LOGS.GPJ < <drawingfile>> 191112020 10.32 10.000 Datgel Lab and in Stu Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05</drawingfile>				10 —		This barah				e read in conjunction with EI Australia's accompanying sta	ndor		- 	-
JB 1.05							01010	y 5100		The and a conjunction with Li Australia's accompanying Sta	nuar			
EIA L														

BOREHOLE: BH205M

Project	Detailed Site Investigation
Location	28 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E24175.E02
Client	Altis Property Partners Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin DB8 Inclination -90°
 Sheet
 1 OF 1

 Date Started
 9/11/20

 Date Completed
 9/11/20

 Logged
 SL

 Date:9/11/20
 Date:

								Inclination -90°			Checked Date:						
Drilling Sampling								Field Material Desc									
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	CONDITION	CONSISTENCY DENSITY	PIEZOMETER DETAILS ID Static Water Level BH205M S S S S S S S S S S S S S						
			0 — - -	-	BH205M_0.2-0.3 ES PID = 2.7 ppm		-	FILL: Sandy CLAY; low plasticity, brown, with fine grained sand, with sub-angular to angular gravels, no odour.	м	-							
									1— - -	1.00	BH205M_0.8-0.9 ES PID = 1.9 ppm BH205M_1.3-1.4 ES PID = 1.1 ppm			Silty CLAY; medium to high plasticity, red-brown mottled grey, no odour.			
uarger Labrart mission for - 500 Luts E.h. 1.13.2014-01-05 Prij E.h. 1.13.2014-01-05 AD/T	-		2 — - - 3 — - - - - - - - - - - - - - - - - - - -				, , , , , , , , , , , , , , , , , , ,		м	-	Grout						
		V 9/11/20				;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				Bentonite UPVC 50 mm Casing Sand							
			8	9.00				SHALE; pale brown, moderately weathered, no odour.	м	-	UPVC 50 mm Screen						
			<u>9</u> - -					Borehole Terminated at 9.00 mBGL; Target Depth Reached.			[. · · · · · · · · · · · · · · · · · · ·						
		1	10—	1	This borehol	e log sho	ould b	e read in conjunction with EI Australia's accompanying sta	ndar	d not	۱] ЭS.						

8

BOREHOLE: BH206

Project	Detailed Site Investigation
Location	28 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E24175.E02
Client	Altis Property Partners Pty Ltd

Contractor Drill Rig Hand Auger Inclination -90°

Sheet	1 OF 1						
Date Started	9/11/20						
Date Completed	9/11/20						
_ogged SL	Date:9/11/20						
Checked	Date:						

Drilling Sampling **Field Material Description** PENETRATION RESISTANCE JSCS SYMBOL MOISTURE CONDITION CONSISTENCY DENSITY RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS GRAPHIC LOG SAMPLE OR FIELD TEST SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0 FILL FILL: Sandy CLAY; low plasticity, brown, with fine grained sand, with sub-angular to angular gravels, no odour. GWNE BH206_0.2-0.3 ES Μ ₹H PID = 2.1 ppm 0.50 CI-CH RESIDUAL SOIL Silty CLAY; medium to high plasticity, orange mottled red, no Μ -0.70 BH206_0.6-0.7 ES odour. Borehole Terminated at 0.70 mBGL; Target Depth Reached. PID = 1.2 ppm 1 2 3 19/11/2020 10:32 10.0.000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 4 5 6 7 <<DrawingFile>> 8 IS AU BOREHOLE 3 E24175.E02 BOREHOLE LOGS.GPJ 9 10 EIA LIB 1.03.GLB 1 This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

8

BOREHOLE: BH207

Project	Detailed Site Investigation
Location	28 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E24175.E02
Client	Altis Property Partners Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin DB8

Sheet	1 OF 1					
Date Started	9/11/20					
Date Completed	9/11/20					
Logged SL	Date:9/11/20					
Checked	Date:					

C Inclination -90° Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS GRAPHIC LOG SAMPLE OR FIELD TEST SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0 FILL FILL: Sandy CLAY; low plasticity, brown, with fine grained sand, with sub-angular to angular gravels, no odour. BH207_0.2-0.3 ES Μ _ GWNE 0.60 AD/T CI-CH RESIDUAL SOIL Silty CLAY; medium to high plasticity, red-brown mottled grey, no odour. ١x BH207_0.9-1.0 ES Ī Μ _ 1 -1.30 Borehole Terminated at 1.30 mBGL; Target Depth Reached. 2 3 19/11/2020 10:32 10.0.000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 4 5 6 7 <<DrawingFile>> 8 IS AU BOREHOLE 3 E24175.E02 BOREHOLE LOGS.GPJ 9 10 EIA LIB 1.03.GLB 1 This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

BOREHOLE: BH208

Detailed Site Investigation
28 Elizabeth Street, Liverpool NSW
Refer to Figure 2
E24175.E02
Altis Property Partners Pty Ltd

 Contractor
 Geosense Drilling Pty Ltd

 Drill Rig
 Hanjin DB8

 Inclination
 -90°

Sheet	1 OF 1					
Date Started	9/11/20					
Date Completed	9/11/20					
Logged SL	Date:9/11/20					
Checked	Date:					

Drilling					Sampling Field Material Description								
METHOD	PENETRATION RESISTANCE	_	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL			CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0 —	0.10		+	<i></i>	1 -	CONCRETE; 100 mm thick.	L	L - ,	CONCRETE HARDSTAND	T
			-		BH208_0.2-0.3 ES		\bigotimes	-	FILL: Sandy CLAY; low plasticity, brown, with fine grained sand, with sub-angular to angular gravels, no odour.	м	-	FILL	
		ш	-	0.60			\bigotimes	X	sand, with sub-angular to angular gravels, no odour.		-		
AD/T	-	GWNE	-	0.00	•			CI- CH	Silty CLAY; medium to high plasticity, red-brown mottled grey,			RESIDUAL SOIL	T
			1—		BH208_0.9-1.0 ES		<u></u>		no odour.	м	-		
				1.30			<u> </u>						
			-	1.00			X		Borehole Terminated at 1.30 mBGL; Target Depth Reached.				T
			-	1									
			-	1									
			2—	1									
			_										
			-	-									
			-	-									
			3—	1									
			-										
			-										
8			-	-									
014-07-			4 —	-									
1.03 2			-	-									
Prj: EIA			-	-									
-07-05			-										
03 2014			-	1									
EIA 1.			5—										
D LIB			-	-									
od - DG			-	-									
a Situ T			-	-									
b and li			6—	1									
atgel La			-										
000			-										
32 10.0			-	-									
020 10:			7—	+									.
19/11/2			-	1									
File>>			-	1									
Drawing			-										
SPJ ≪			8	-									
L0GS.(-	-									
HOLE			-	1									
2 BORE			-	1									
175.E0.			- 9 —]									
3 E24			-	-									
EHOLE			-	-									
VU BOF			-	-									
og IS /			-	-									
EA LIB 1.03 GIB Log IS AU BOREHOLE 3 E24175.E02 BOREHOLE LOGS GPJ <-DawingFile>> 19/11/2020 10.32 10.0000 Daget Lab and in Stu Tod - DGD LIb: EA 1.03 2014/0765 Pg: EA 1.03 2014/0745	1		10 —		This barab			ud b		dor	1 not		
JB 1.03					This boren	01610	ษ ราเป	uu Di	e read in conjunction with EI Australia's accompanying star	iuar(1 110(6	cə.	
EIA I													

BOREHOLE: BH209

Project	Detailed Site Investigation
Location	28 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E24175.E02
Client	Altis Property Partners Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin DB8

Sheet	1 OF 1				
Date Started	9/11/20				
Date Completed	9/11/20				
Logged SL	Date:9/11/20				
Checked	Date:				

С Inclination -90° Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS GRAPHIC LOG SAMPLE OR FIELD TEST SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0 FILL FILL: Sandy CLAY; low plasticity, brown, with fine grained sand, with sub-angular to angular gravels, no odour. BH209_0.2-0.3 ES Μ _ GWNE 0.60 AD/T CI-CH RESIDUAL SOIL Silty CLAY; medium to high plasticity, red-brown mottled grey, no odour. ١x BH209_0.9-1.0 ES Ī Μ _ 1 -1.30 Borehole Terminated at 1.30 mBGL; Target Depth Reached. 2 3 19/11/2020 10:32 10.0.000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 4 5 6 7 <<DrawingFile>> 8 IS AU BOREHOLE 3 E24175.E02 BOREHOLE LOGS.GPJ 9 8 10 EIA LIB 1.03.GLB 1 This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

8

BOREHOLE: BH210

Project	Detailed Site Investigation
Location	28 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E24175.E02
Client	Altis Property Partners Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Hanjin DB8

Sheet	1 OF 1				
Date Started	9/11/20				
Date Completed	9/11/20				
Logged SL	Date:9/11/20				
Checked	Date:				

C Inclination -90° Drilling Sampling **Field Material Description** MOISTURE CONDITION CONSISTENCY DENSITY PENETRATION RESISTANCE JSCS SYMBOL RECOVERED STRUCTURE AND ADDITIONAL OBSERVATIONS GRAPHIC LOG SAMPLE OR FIELD TEST SOIL/ROCK MATERIAL DESCRIPTION METHOD WATER DEPTH (metres) DEPTH RL 0 FILL FILL: Sandy CLAY; low plasticity, brown, with fine grained sand, with sub-angular to angular gravels, no odour. BH210_0.2-0.3 ES Μ _ GWNE 0.60 AD/T CI-CH RESIDUAL SOIL Silty CLAY; medium to high plasticity, red-brown mottled grey, no odour. ١x BH210_0.9-1.0 ES x Μ _ 1 -1.30 Borehole Terminated at 1.30 mBGL; Target Depth Reached. 2 3 19/11/2020 10:32 10.0.000 Datgel Lab and In Situ Tool - DGD | Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05 4 5 6 7 <<DrawingFile>> 8 IS AU BOREHOLE 3 E24175.E02 BOREHOLE LOGS.GPJ 9 10 EIA LIB 1.03.GLB 1 This borehole log should be read in conjunction with EI Australia's accompanying standard notes.

BOREHOLE: BH211

Project	Detailed Site Investigation
Location	28 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E24175.E02
Client	Altis Property Partners Pty Ltd

 Contractor
 Geosense Drilling Pty Ltd

 Drill Rig
 Hanjin DB8

 Inclination
 -90°

Sheet	1 OF 1				
Date Started	9/11/20				
Date Completed	9/11/20				
Logged SL	Date:9/11/20				
Checked	Date:				

Drilling			Sampling		Field Material Description								
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
			0-	0.10			<i>p</i> b	-	CONCRETE; 100 mm thick.	-		CONCRETE HARDSTAND	T
			-		BH211_0.2-0.3 ES			s	SAND; fine grained, brown, no odour.	\frown		RESIDUAL SOIL	+
			-		PID = 3.1 ppm				SAND, fille grained, brown, no odour.	M	-		
F		빌		0.50	i ib oli ppin		× · · ·	CI-	Silty CLAY; medium to high plasticity, orange mottled red, no				
АD/Т	-	GWNE	-				×	СН	odour.				
		ľ	-	1	BH211_0.8-0.9 ES		x	}		м	-		
			1	-	PID = 2.4 ppm		<u> </u>						-
_	-			1.20			x	<u> </u>					_
			-						Borehole Terminated at 1.20 mBGL; Target Depth Reached.				
									·				
			-	1									
			2-	1									-
			-										
			-	-									
			-	4									
			_										
			3-										
			-	1									
			-	1									
			-	1									
-02			-	-									
10.000 Datgel Lab and In Stu Tool - DGD LID: ElA 1.03 2014-07-05 Pg: ElA 1.03 2014-07-05			4-	-									-
.03 2(-	-									
EIA 1			-										
5 Prj:													
4-07-0													
3 2014			-	1									
A 1.0			5 —										-
З			-	1									
GD			-	-									
- 0			-	-									
itu To			-	-									
9 1 1 2			6-	-									-
ab ar			-										
atgel			-										
8													
10.0.0													
0:32			-										
020 1			7-	1									-
9/11/2			-										
e>> 1			-	1									
/ingFil			-	1						1			
<draw< td=""><td></td><td></td><td>- </td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></draw<>			-	-						1			
° Li			8-	1									-
0GS.(-	-									
LE LC			-	1									
(EHO										1			
2 BOF										1			
75.E0													
E241			9—	1									-
ole 3			-	1									
REHC			-	1									
U BO			-	1						1			
IS A			-	1									
B Log			10 —			1				1			
EA LIB 1.03 GIB Log IS AU BOREHOLE 3 E24175.E02 BOREHOLE LOGS. GFJ < <drawngrieo> 19/11/2020 10:32</drawngrieo>					This borehol	e lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	ndaro	l note	es.	
UB 1.									. , , ,				
EIA													

BOREHOLE: BH212

Project	Detailed Site Investigation
Location	28 Elizabeth Street, Liverpool NSW
Position	Refer to Figure 2
Job No.	E24175.E02
Client	Altis Property Partners Pty Ltd

Contractor Geosense Drilling Pty Ltd Drill Rig Inclinatio Hanjin DB8 -90°

Sheet	1 OF 1				
Date Started	9/11/20				
Date Completed	9/11/20				
Logged SL	Date:9/11/20				
Checked	Date:				

	Inclination -90°							Checked Date:						
	Drilling Sampling						_			Field Material Desc				
	METHOD	PENETRATION RESISTANCE	WATER		DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
				0	0.10				-	CONCRETE; 100 mm thick.	<u> -</u>		CONCRETE HARDSTAND	Ŧ
	_		ш	-	0.50	BH212_0.2-0.3 ES PID = 2.7 ppm		\bigotimes	-	FILL: Silty CLAY; medium to high plasticity, dark brown, with trace of sub-angular to angular gravels, no odour.	м	-		.
	AD/T	-	GWNE	-	0.00				-	SHALE; pale brown, moderately weathered, no odour.			BEDROCK	-
				-		BH212_0.7-0.8 ES PID = 2.4 ppm					м	-		-
	_			1 —	1.10	PP ····					<u> </u>			-
				-						Borehole Terminated at 1.10 mBGL; Target Depth Reached.				-
				-										-
				2—										-
				-										-
				-										-
				3—										-
				-										-
				-										-
10				-										-
14-07-0				4 —										_
1.03 20				-										-
oj: EIA				-										-
Datgel Lab and In Situ Tool - DGD Lib: EIA 1.03 2014-07-05 Prj: EIA 1.03 2014-07-05				-										-
03 2014				5										-
: EIA 1.0				5-										
BD Lib				-										-
Fool - DC				-										-
In Situ 7				-										-
ab and				6										-
Datgel L				_										-
				-										-
0:32 10				-										-
/2020 1(7—										-
> 19/11														
ngFile>				-										-
< <drawi< th=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawi<>				-										-
S. GPJ				8 —										-
E LOG														
REHOL				_										
E02 BC				-										-
E24175.				9 —										-
OLE 3				-										-
BOREH														
EIA LIB 1.03.0LB Log IS AU BOREHOLE 3 E24175.E02 BOREHOLE LOGS.GPJ < <drawingfile>> 19/11/2020 10:32 10.0.000</drawingfile>				_										.
LB Log				10										
1.03.G						This borehol	e lo	g shou	Id be	e read in conjunction with EI Australia's accompanying sta	ndar	d not	es.	
EIA LIB														

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

Contamination Remediation Geob	chnical					
DRILLING/EXC	AVATION METHOD					
	and Auger	RD	Rotary blade o	or drag bit	NQ	Diamond Core - 47 mm
	atube Coring	RT	Rotary Tricone	e bit	NMLC	Diamond Core - 52 mm
	on-destructive digging	RAB	Rotary Air Blas		HQ HMLC	Diamond Core - 63 mm
	Iger Screwing	RC	Reverse Circu	lation	-	Diamond Core - 63mm
	ıger Drilling	PT	Push Tube		BH	Tractor Mounted Backhoe
	Bit	СТ	Cable Tool Rig	9	EX	Tracked Hydraulic Excavator
	C-Bit, e.g. ADT	JET	Jetting		EE	Existing Excavation
	bllow Auger	WB	Washbore or E	Bailer	HAND	Excavated by Hand Methods
PENETRATION	EXCAVATION RESIST	ANCE				
L Low res	sistance. Rapid penetratio	n/ excavati	on possible with	little effort from	n equipment i	used.
			•		• •	ate effort from equipment used.
-						ificant effort from equipment used.
R Refusal	/ Practical Refusal. No f	urther prog	gress possible wit	hout risk of da	mage or una	cceptable wear to equipment used.
	ts are subjective and are de ng tools and experience of t			cluding equip	ment power a	and weight, condition of
WATER						
	Water level at da	te shown		\triangleleft	Partial wate	er loss
	Water inflow				Complete	water loss
GROUNDWATE NOT OBSERVE				ent or not, was	s not possible	e due to drilling water, surface seepage
GROUNDWATE		,				er could be present in less permeable n left open for a longer period.
SAMPLING ANI		y nave be				non open for a longer period.
seating 30/80mm RW HW HB	Penetration occ	urred unde urred unde	curs, the blows a er the rod weight er the hammer an on anvil	only		
Sampling						
DS	Disturbed Samp					
BDS GS	Bulk disturbed S Gas Sample	sample				
WS	Water Sample					
U63	•	e sample -	number indicates	s nominal sam	ple diameter	in millimetres
Testing						
FP	Field Permeabil	itv test ove	r section noted			
FVS				ected shear st	renath (sv = r	peak value, sr = residual value)
PID	Photoionisation	•			- J - (1	····,···,
PM	Pressuremeter		0 11			
PP	Pocket Penetro	meter test	expressed as ins	trument readir	ng in kPa	
WPT	Water Pressure	tests				
DCP	Dynamic Cone					
CPT	Static Cone Per					
CPTu	Static Cone Per	netration te	st with pore pres	sure (u) measi	urement	
					•	soil contamination assessment
R = 0	No visible evidence of cor			R = A		ural odours identified
R = 1	Slight evidence of visible	contaminat	ION	R = B	0	natural odours identified
R = 2	Visible contamination			R=C		on-natural odours identified
R = 3	Significant visible contami	nation		R = D	Strong non-	natural odours identified
	ECOVERY ore Recovery (%)	90P	= Solid Core Re		E	ROD = Rock Quality Designation (%)
	ore Recovery (%)			o recovered		RQD = Rock Quality Designation (%)
$= \frac{\text{Length of core r}}{\text{Lengh of cor}}$	ecevered re run x 100	$=\frac{2 \text{ Length}}{2}$	n ofcylindrical con Lengh of core ru	X	100 =	$\frac{\Sigma Axial \ Lenghts \ of \ core > 100 mm}{Lengh \ of \ core \ run} \ x \ 100$
MATERIAL BOU						
= inferr	ed boundary		 = probable b 	oundary	_	? ? ? ? = possible boundary

eiaust Contamination Remediation	ralia			USED C			SOIL DESCR AND TEST PI				
	FILL		.000.	RGANIC SC DL, OH or Pt		 	CLAY (CL, C	CI or CH)			
		BLES or _DERS	**** **** ****	ILT (ML or N	1H)		SAND (SP c	or SW)			
	Combinations of these basic symbols may be used to indicate mixed materials such as sandy clay										
CLASSIFICATION AND INFERRED STRATIGRAPHY Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/tactile methods.											
PARTICLE	SIZE CH	ARACTERIST	cs	USCS SY	MBOLS						
Major Divi		Sub Division	Particle Size	Major D	Divisions	Symbol	Descrip				
	BOULDE	ERS	>200 mm	ي ع	o of are	GW	Well graded grav sand mixtures, lit				
	COBBL	ES	63 to 200 mm	LS iles	50% ins a	GP	Poorly graded gra	vel and gravel-			
		Coarse	20 to 63 mm	0.0 ר	than 5(se grain >2.mm	-	sand mixtures, lit Silty gravel, gra				
GRAVE	EL	Medium	6 to 20 mm	than that	More than 50% of coarse grains are >2.mm	GM	mixtur	es.			
		Fine	2 to 6 mm	by c ater	Mo	GC	Clayey gravel, gra mixtur				
SAND		Coarse Medium	0.6 to 2 mm 0.2 to 0.6 mm	3 7 1 COARSE GRAINED SOILS More than 50% by dry mass less than 63mm is greater than 0.075mm	More than 50% of coarse grains are <2 mm	SW	Well graded sand sand, little or	no fines.			
0, 112		Fine	0.075 to 0.2mm	m than	se gi 2 m	SP	Poorly graded sar sand, little or				
	SILT	-	0.002 to 0.075 m		re th oars re <	SM	Silty sand, sand	-silt mixtures.			
	CLA		<0.002 mm	tha T	of c	SC	Clayey sand, mixtur				
	PLAS			.s nass than		ML	Inorganic silts of very fine sands, i	low plasticity, ock flour, silty			
), parcent		c	H	FINE GRAINED SOILS More than 50% by dry mass less than 63mm is less than	Liquid Limit less	CL	or clayey fir Inorganic clays of plasticity, gravell clays, silty	low to medium y clays, sandy			
INDEX { I_0}	20	CL CI .N		FINE GRAINED More than 50% by ess than 63mm is	Liqu	OL	Organic silts and clays of low	d organic silty			
QNI			он	LE G than	p ^، د «	MH	Inorganic silts of	high plasticity.			
STICITY	10 CL-M	OL or ML	MH	FII More less	Liquid Limit > than 50%	CH OH	Inorganic clays of high plasticity. Organic clays of medium to high plasticity.				
PLAST	20		60 70			PT	Peat muck and	other highly			
		LIQUID LIMIT (WL),	percent				organic	soils.			
MOISTUR	1										
Symbol D	Term Dry	Description Sands and grave	els are free flowing.	Clays & Silts ma	v be brittle or	friable and	powderv.				
M	Moist		than in the dry cond								
W	Wet		water. Sands and g								
		ohesive soils may than, « much less		n relation to plast	ic limit (WP) o	r liquid limi	t (WL) [» much great	er than,			
CONSISTEN			-	DENSITY							
Symbol	Term		Shear Strength	Symbol	Term		Density Index %	SPT "N" #			
VS S	Very So Soft		12 kPa 25 kPa	VL I	Very Loo Loose	se	< 15 15 to 35	0 to 4 4 to 10			
F	Firm	25 to	50 kPa	MD	Medium De	nsity	35 to 65	10 to 30			
St VSt	Stiff		100 kPa	D VD	Dense Vory Don		65 to 85	30 to 50			
VSt H	Very Sti Hard		200 kPa 200 kPa		Very Den	30	Above 85	Above 50			
In the absen # SPT correl	ce of test r	esults, consistenc	y and density may b	be assessed from by be subject to co	correlations vorrections for o	vith the obs	served behaviour of t pressure and equipr	he material. ment type.			
MINOR CO	MPONE	NTS									
Term		nent Guide e just detectable b	y feel or eye but soi	l properties little			pportion by Mass e grained soils: $\leq 5\%$,			
Trace	or no diff	erent to general p	roperties of primary by feel or eye but s	component	e		grained soil: ≤15% grained soils: 5 - 12	%			
Some	or no different to general properties of primary component Fine grained soil: 15 - 30%										

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

Symbol Term		Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide				
EL	Extremely Low	< 0.03	Easily remoulded by hand to a material with soil properties.				
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.				
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.				
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.				
н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.				
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.				
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.				
#							

[#]Rock Strength Test Results

◀

Point Load Strength Index, $Is_{\rm (50)},$ Axial test (MPa)

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result ($Is_{(50)}$) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x $Is_{(50)}$, but can be as low as 5 MPa.

ROCK	MATER							
Sym	bol	Term	Field Guide					
RS		Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.					
EW	1	Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.					
DW	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or					
	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.					
SW		Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.					
FR		Fresh	Rock shows no sign of decomposition or staining.					

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

Layering					Strue	ture					
Term		Descr	escription			Structure Term Spacing					
		Desci	iption				nated		Spacing (mm <6		
Massive		No lay	Lami	·			6 – 20				
		Lovori	-		bedded		20 - 60				
Poorly Developed		proper	ng just visible; litt ties	le effect off		y bed			60 - 200		
		· ·	ng (bedding, folia	tion closurado)			edded		200 - 600		
Well Developed			t; rock breaks m						600 - 2,000		
	, e u		el to layering				ckly bedded > 2,000				
ABBREVIAT	IONS A		CRIPTIONS FO	R DEFECT TYP			,		I ,		
Defect Type		Abbr.	Description								
Joint		JT	Surface of a fracture or parting, formed without displacement, across which the rock has little or no tensile strength. May be closed or filled by air, water or soil or rock substance, which acts as cement.								
Bedding Parting		BP	Surface of fracture or parting, across which the rock has little or no tensile strength, parallel or sub-parallel to layering/ bedding. Bedding refers to the layering or stratification of a rock, indicating orientation during deposition, resulting in planar anisotropy in the rock material.								
Foliation		FL	Repetitive planar structure parallel to the shear direction or perpendicular to the direction of higher pressure, especially in metamorphic rock, e.g. Schistosity (SH) and Gneissosity.								
Contact		CO	The surface between two types or ages of rock.								
Cleavage		CL	Cleavage planes appear as parallel, closely spaced and planar surfaces resulting from mechanical fracturing of rock through deformation or metamorphism, independent of bedding.								
Sheared Seam/ Zone (Fault)		SS/SZ	Seam or zone with roughly parallel almost planar boundaries of rock substance cut by closely spaced (often <50 mm) parallel and usually smooth or slickensided joints or cleavage planes								
Crushed Seam/ Zone (Fault)		CS/CZ	Seam or zone composed of disoriented usually angular fragments of the host rock substance with roughly parallel near-planar boundaries. The brecciated fragments may be of clay, silt, sand or gravel sizes or mixtures of these.								
Decomposed Seam/ Zone		DS/DZ	Seam of soil substance, often with gradational boundaries, formed by weathering of the rock material in places.								
Infilled Seam		IS	Seam of soil substance, usually clay or clayey, with very distinct roughly parallel boundaries, formed by soil migrating into joint or open cavity.								
Schistocity		SH	The foliation in schist or other coarse grained crystalline rock due to the parallel arrangement of platy or prismatic mineral grains, such as mica.								
Vein		VN	Distinct sheet-like body of minerals crystallised within rock through typically open-space filling or crack-seal growth.								
ABBREVIAT	IONS A	ND DES	CRIPTIONS FO	R DEFECT SHA	PE ANI	D RO	UGHNESS				
Shape	Abbr.	Description		Roughness	Abbr.	Dese	escription				
Planar	PI	Consis	istent orientation Polished Pol Shiny smooth surface								
Curved	Cu	Gradu orienta	al change in ation	Slickensided	SL	Groo	Grooved or striated surface, usually polished				
Undulating	Un	Wavy	surface	Smooth	S	Smooth to touch. Few or no surface irregularitie					
		One o				Man	Many small surface irregularities (amplitude gene <1mm). Feels like fine to coarse sandpaper				
Stepped	St	define	r more well d steps	Rough	RF		,	e fine to	coarse sandpaper		
Stepped Irregular	St Ir	define Many in orie	d steps sharp changes ntation	Very Rough	VR	Man >1m	y large surfa m. Feels like	e fine to ce irreg e very co			
Stepped Irregular		define Many in orie	d steps sharp changes	Very Rough The dip (inclination	VR on from	Man >1m horizo	y large surfa m. Feels like ontal) of the c	e fine to ce irreg very co defect.	o coarse sandpaper ularities, amplitude generall parse sandpaper		
Stepped Irregular Orientation:	lr	define Many in orie Vertic Inclin	d steps sharp changes ntation cal Boreholes –	Very Rough The dip (inclination The inclination is	VR on from s measu	Man >1m horizo	y large surfa m. Feels like ontal) of the c	e fine to ce irreg very co defect. ingle to	o coarse sandpaper ularities, amplitude generall parse sandpaper the core axis.		
Stepped Irregular Orientation:	lr	define Many in orie Vertio Inclir	d steps sharp changes ntation cal Boreholes – ned Boreholes – CRIPTIONS FOR	Very Rough The dip (inclination The inclination is	VR on from s measu	Man >1m horizo red a	y large surfa m. Feels like ontal) of the o s the acute a	e fine to ce irreg very co defect. ingle to	o coarse sandpaper ularities, amplitude generall parse sandpaper the core axis.		
Stepped Irregular Orientation: ABBREVIATI	Ir ONS A Abbr.	define Many in orie Vertic Inclir ND DES Descrip	d steps sharp changes ntation cal Boreholes – ned Boreholes – CRIPTIONS FOR	Very Rough The dip (inclination The inclination is R DEFECT COA	VR on from s measu	Man >1m horizo red a	y large surfa m. Feels like ontal) of the c s the acute a DEFECT A	e fine to ce irreg very co defect. ingle to PERTU	o coarse sandpaper ularities, amplitude generall parse sandpaper the core axis. RE		
Stepped Irregular Orientation: ABBREVIATI Coating	Ir ONS A Abbr. CN	define Many in orie Vertie Inclin ND DES Descrip No visib	d steps sharp changes ntation cal Boreholes – ned Boreholes – CRIPTIONS FOR	Very Rough The dip (inclination The inclination is R DEFECT COA ing faces are discol	VR on from s measu TING	Man >1m horizo red a	y large surfa m. Feels like ontal) of the c s the acute a DEFECT AF	e fine to ce irreg very co defect. ingle to PERTUR Abbr.	o coarse sandpaper ularities, amplitude general parse sandpaper the core axis. RE Description		

Appendix E – Calibration Form, Field Data Sheets and GPR Survey Letter

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 33 102 449 507 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument: Mini RAE 3000

Serial Number: 592-906667 - El PID02 🗌 OR 592-901345 - El PID03 🖄

good

Instrument Conditions: _

Calibration gas species: Isobutylene.

Calibration gas concentration: _____ppm

Gas bottle number: __________ [0]48 18 / [0]

This PID has been calibrated to Isobutylene gas with the span concentration displayed as

The PID is initially zero calibrated in fresh air.

Remaining gas in bottle: _____psi (if reading is <250 psi, notify Equipment Manager to arrange new

gas bottle order)

The above detector was calibrated in accordance with manufacturer's specifications.

Signed: _	85
Date:	9/11/2
Time:	7 am.

		WATER	SAMPLI	NG FIELD	SHEET			eiaustralia
Site Addr	ess:	V Elis	abeth	St.	TIVON	Day	Job Num	ber: F7241715
Client:	V	0	2070 [v[-42	2100		Date:	17-11-20
Field Staf	ff		81				Sampling	Location ID 134 202/11
Well Loca							Round No	
MEDIUM		(T	Groundwa		urface W	ator	□Stormw	
			Gloundwa			ater		
							Ctick up /	down (m): -0, (+ above ground - below ground)
	allation Da						-	
	II Depth (n							terval (mBTOC):
And in case of the local division of the loc	Sampling	Date:					Previous	SWL (mBTOC):
PID REA					/			
	Ispace (pp			_/_			PID Back	ground (ppm):
	thing Space	e (ppm):		/				
PRE PUF	RGE			0.00				
Total We	ll Depth (n	BTOC):		9.50			Well Head	d Condition:
SWL (mE	BTOC):		26	6		×	Water Co	lumn (m):
PHASE S	EPARATI	ED HYDRO	CARBON	NS (PSH)	/			
Depth to	PSH (mB)	TOC):		/	~		PSH Visu	ally Confirmed (Bailer):
	kness (mr			/				
	AND SAM		/	/			1	
	g Method		Bladde	ar [JPeristalti	ic [Submersik	ble DOther:
		t (mBTOC		00			Fill Timer:	E. ^{pr}
		gulator (ps		010				173
				2.00			Discharge	ADMC
	Conditions	3:	>	unny	15 00	1	Cycle:	Opmy
Pump on					12 PIL	/	Pump off	time:
		PARAMET	FERS				I	
Probe Ma	ake and Mo	odel:					Bump Tes	st Date and Time:
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour, sheen etc.)
12:01	0.5	3.69	24,02	26780	40,2	0.4	7.69	Pale grey, low, no, no.
12:02	1,0	3.71	24.08	27720	30.6	0.58	7.61	
1	1.5	3,73	24,10	26730	33,2	0,60	7.60	
	210	3.76	24,12	24932	20,1	051	7.60	
V	45	3.81	Ital 1	25794	34.6	0.68	7.61	V
				~				
	1	1						
				1				
						1		
	ilisation ra		+0.2°C	+3%	+20mV	+10%	+0.2	
	ilisation ra		±0.2°C	±3%	±20mV	±10%	±0.2	
3 cons	secutive re			5:	±20mV	±10%	±0.2	taken
3 cons OTHER (secutive re	adings	RVATIONS	5:	±20mV	±10%	±0.2	taken
3 cons	secutive re	adings	RVATIONS	5:	±20mV	±10%	±0.2 M-1 7 (taken

		WATER	SAMPLIN	IG FIELD	SHEET			
					1			eiaustralia
Site Addre	ess: 7/	Eliza	beth	St.	Livert	220/	Job Numb	er: E24175
Client:	¥ 0					(Date:	17 -11 -20
Field Staff	f:		[]				Sampling	Location ID BH201 M
Well Loca	tion:	1.	R	HWIM			Round No	:
MEDIUM		X	Groundwat	ter DS	urface Wa	ater	□Stormwa	ater □Other:
SAMPLIN	G POINT	INFO						
Well Insta							Stick up /	down (m): $-0,09$ (+ above ground - below ground)
	I Depth (m						-	terval (mBTOC):
	Sampling I				/		Previous S	SWL (mBTOC):
PID READ	and the second division of the second divisio			/				
	space (pp	m):		/			PID Backg	ground (ppm):
	hing Spac			/				
PRE PUR		- (PP).						
	Depth (m	BTOC):		8.0			Well Head	Condition: 9000
SWL (mB				2.87			Water Col	V
		D HYDRO	CARBON	-00	/		1	
	PSH (mBT			, =,,,			PSH Visua	ally Confirmed (Bailer):
	kness (mn							
-			/	/				
Sampling			Bladde	r [Peristalti	с Г	Submersib	ole Other:
		t (mBTOC)		7,	20	<u> </u>	Fill Timer:	
		gulator (ps		N	2		Discharge	1
	Conditions			nny	<i>.</i>		Cycle:	PMU.
Pump on			24	IInn	2		Pump off	time:
		PARAMET	FRS	1100	1			
	ke and Mo		LING				Bump Tes	at Date and Time:
	Volume	SWL	Temp	EC	Redox	DO	pH	
Time	(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	Comments (colour, turbidity, odour, sheen etc.)
11:01	015	2.93	23.06	4020	-4.9	D	7.25.	grey, low to median, no, no
11:02	1.0	7.98	23.37	40430	-15.2.	Ĩ	6.92	
1	1.5	2.03	23.40	42660	-312		6.91	
	2.0	3.07	23,41	42750	-37.4		6,97	
V	2.5	3,10	23,40	4210	-20,6	V	6.95	
11:06	3.0	3.12	22,47	42060	-21.7	0.04	6.96	V
L. N			110			/	0.1.2	
							-	
1000 000 - 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ilisation ra ecutive re		±0.2°C	±3%	±20mV	±10%	±0.2	
OTHER C	COMMEN		RVATIONS		BI	4 20)	M-1	taken
		/	an po		Con 1			
SIGNATU	JRE:					51	15	
					hard			

		WATER	SAMPLIN	IG FIELD	SHEET			eiaustralia
Site Addre	ss: 78	Elizabe	Th S	1. Li	verbal		Job Numb	ber: E24175
Client:		10000		6			Date:	17-11-20
Field Staff	:			SU			Sampling	Location ID BH 20 SM
Well Locat	tion:			BHX	KM.		Round No	
MEDIUM		ф(Groundwat	and the second se	urface Wa	ter	□Stormwa	ater DOther:
SAMPLIN	G POINT							
Well Instal							Stick up /	down (m): +0,76 (+ above ground - below ground)
Initial Well								terval (mBTOC):
Previous S								SWL (mBTOC):
PID READ		Jale.			/		I TEVIOUS (
								ground (ppm):
PID Heads							FID Back	ground (ppm).
PID Breat		e (ppm):						
PRE PUR				1.				1 Condition: 9000
Total Well		BTOC):			12			
SWL (mB				3,76			Water Co	lumn (m):
PHASE S			CARBON	IS (PSH)				
Depth to F	PSH (mBT	OC):		/			PSH Visu	ally Confirmed (Bailer):
PSH Thick	kness (mn	n):		/				
PURGE A	ND SAMP	PLE	/					
Sampling	Method		Bladde		Peristaltic		Submersit	ole DOther:
		(mBTOC)):	.91	n		Fill Timer:	. 5
		gulator (ps		20			Discharge	e Timer:
Weather (/	Clouch	/		Cycle:	OP M4
Pump on t				10:200	/		Pump off	time:
		PARAMET		0,000	×///			
	ke and Mo		LIKO				Bump Tes	st Date and Time:
TTODE IVIA	Volume	SWL	Temp	EC	Redox	DO	рН	
Time	(L)	(mbtoc)	(°C)	(µS/cm)	(mV)	(mg/L)	(units)	Comments (colour, turbidity, odour, sheen etc.)
10:21	0,5	3.80	23.67	37/20	133.0	0	6.58	pale grey, low, no, no
10:22	1,0	3.85	23.69	37750	126.4	0	6,63	
	1.5	3.88		35472	113,1		6.61	
	2.0	2,93	23.61	36975	137.2		6,60	
	2.5	3.97	23.61	37598	106,7		6.60	
V	3.0	4.0	23.62	37632	124.1	V	6.59	
							ĺ ĺ	
		4						
		1.						
Stab	ilisation ra	ange:						
THE REPORT OF CARENESS	secutive re		±0.2°C	±3%	±20mV	±10%	±0.2	
and the local state of the		TS/OBSER	VATIONS	S:		I		1
OTHER	Samp			5 M-1	2	BHZ	w- Gu	IDDI, BH200-GWQ7/ taken
SIGNATU	JRE:				SC	5		·

Sharon Li - ElAustralia

From:	Jason Vane <jason@sslocators.com.au></jason@sslocators.com.au>
Sent:	Friday, 4 December 2020 4:21 PM
То:	Sharon Li - ElAustralia
Cc:	Alejandra Beltran - ElAustralia
Subject:	Re: Liverpool E24175

Hi Sharon,

A GPR survey was conducted at 28 Elizabeth St, Liverpool on 7th November. The GPR scan confirmed 5 Underground Storage Tanks exist at this site, there is also visual evidence (dipping points) supporting this.

Four Tanks are located within the same Tank farm on the Elizabeth St side of the site. A Fifth tank was located towards the middle of the site, right of the now demolished building.

Regards,

On Fri, Dec 4, 2020 at 10:24 AM Sharon Li - EIAustralia <<u>sharon.li@eiaustralia.com.au</u>> wrote:

Hi Jason,

Could you please issue a GPR survey report at 28 Elizabeth Street, Liverpool, NSW you did a few weeks ago? We need it by the end of today or early Monday morning.

I have attached an aerial for your reference.

Appendix F – Chain of Custody and Sample Receipt Documentation

od page: 1 SOS Ref. SE213398_COC						1	and the second								14	-									
Sheet of	-5_	-				Sam	ple N	/latrix							20	Ana	lysis								Comments
Site: B Eliza	abeth	Sf.		-	Project No:												vity)								HM A Arsenic Cadmium
	Liverpa	0			E24775, E	02.		it, etc.)	AHs stos	AHs		q			ion	change	nducti								Chromium Copper Lead
Laboratory:	SGS Au Unit 16, ALEXAN P: 02 85	33 Made	SW 201	15	99			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	HM ^A /TRH/BTEX	17RH/lead		S	Asbestos Quantification	C (cation exchange)	pH / EC (electrical conductivity)	ing Suite						M ^B / PAH	Mercury Nickel Zinc HM B Arsenic
Sample ID	Laboratory ID	Contair Type		Sar Date	mpling	WATER	SOIL	DTHERS	HM A /1	HM A /T	HM Å /T	BTEX /	VOCs	Asbestos	Asbesto	PH / CEC	OH / EC	Dewatering	sPOCAS	PFAS				TCLP HM	Cadmium Chromium Lead Mercury
B42010_0.5.016	1	J.20	B	911	I AM	-	X		×							-	-							-	Nickel Dewatering Suite
1.2-1.3	0			1			1		~	X															pH & EC TDS / Turbidity NTU
BH202A-0.4-0.5									X								8								Hardness Total Cyanide Metals (Al, As, Cd, Cr,
0.91.0		*																							Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
1.4-15																									PAH Total Phenol
(.9-2.0																		,							LABORATORY TURNAROUND
2.4-2.5.	4	11-12	_						_			\times											_		X Standard
2.9-3,0.			-															-	iney 398	000 2000			_		24 Hours
3.4-3.5																L							-		48 Hours
3.9-4.2	5								>	×													_		72 Hours
84703_0.1-0.2	4	,	_	1					\times	~						-							-	\neg	Other
Container Type: J= solvent washed, acid	d ringod Toff				U		Inves	tigator	" Latte		t thos	e sam			allaata	dina									
S= solvent washed, acie P= natural HDPE plastic	d rinsed glas c bottle	ss bottle	, glass jar	Ir					with	standa	ard El	field s	ampli	ng pro	cedur	res.	ccorda	ance	R	eport v	with El	Waste	Classif	ficatio	on Table
VC= glass vial, Teflon S ZLB = Zip-Lock Bag	Septum						Samp Prin		me (EI)				Receiv Print	ved by	0						Comm			A	
			Suite	A 01 4	55 Miller Str	oot	Sign	ature	2	32	E		Signa		0	eba	2		P1-6	rase	(ce	6	fle	jandra
			PY	RMON	T NSW 200		Date		0		_		X	P	-	eh	4								
eiaust	ralia	a			516 0722 stralia.com.a	au	IMP	ORT	ANT	('	12	0 -	10	nla	120	0	3	10							
Contamination Remedia	mon Geotechn	icăl			FORM v.4 - SGS						y resi	ults to:	lab@)eia	ustra	lia.co	m.a	u							

source: Sydney.pdf page: 1 SGS Ref: SE213398_COC

Sheet of	3	-			San	nple N	latrix								Ana	lysis								Comments
Sheet <u>2</u> of Site: <u>78 Eliza</u>	beth	St,	F	Project No:												vity)								HM A Arsenic Cadmium
	Liverp			E24175.E	502.		nt, etc.)	PAHS	AHs					tion	change	onducti								Chromium Copper Lead
Laboratory:	ALEXA	stralia 33 Maddox NDRIA NSW 94 0400 F: 0	2015	9			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX			S	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	ing Suite	0					HM ^B / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory		Sam	pling	WATER		IERS	P/OI	A/T	T/ ₽	BTEX	VOCs	Asbestos	oesto	/ CE	/ EC	Dewatering	sPOCAS	AS				РН	Cadmium Chromium
ID	ID	Туре	Date	Time	WA.	SOIL	01	ΞÖ	HN	IN	BT	2	Asl	Asl	Hd	Hd	Dev	sP(PFAS				TCLP	Lead Mercury Nickel
8+204-02-0.3	8	J,203	9111	AM		×		\times																Dewatering Suite
0.7-0.8		1	1			1																		pH & EC TDS / Turbidity NTU Hardness
3H 205M - 0.2-0.3	9							\times																Total Cyanide Metals (Al, As, Cd, Cr,
08-09																								Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
(.3-14	10								X															PAH Total Phenol
BH206_0.2.0.2	, 11							X																LABORATORY TURNAROUND
0.6-0.7	12								X															Standard
BH 207_ 0.2-0.3	13							\times																24 Hours
0.9-1.0	14								X															48 Hours
BH 208_ 0.2-0.3	15							\times																72 Hours
0.9-10																							_	Other
B4209-02-0.3		V	U	U		J		X																
Container Type: J= solvent washed, aci S= solvent washed, aci P= natural HDPE plasti	d rinsed,Te d rinsed gla		s jar			Inves	tigato	r: I atte with	st that	it thes ard El	e sam I field s	ples w sampli	vere co ng pro	ollecte	ed in a res.	ccorda	ance	R	leport	with E	Waste	e Class	sificatio	n Table
VC= glass vial, Teflon S ZLB = Zip-Lock Bag	Septum					Samp Prir		ame (EI)	:			Recei Prin	ved by	(SGS):				Sam	pler's	Comn	nents:			
						Ciar	atura		SL	-			-	Su	ho				_			P	P	
			uite 6.01, 5 PYRMONT				ature	8	2	5		Sign	D_{i}	B	eh-	-1		-	See		15	Z	19	ge.
Piaus	trali	2	Ph: 95	16 0722		Date		10/	NAMES OF TAXABLE PARTY.	20	2 .	Date 10		20	e	3.1	0							
	ation Geotech	inical	COC March 2018 F		au			ANT		rv resi	ults to	lab@	ີງeia	ustra	lia co	m ai	,							

Sheet 3 of	3	-			San	nple N	latrix								Ana	lysis								Comments
Site: 28 Elize	beth	St,		Project No):											ity)								HM A Arsenic
Live	bal			E24175	Eoz		ıt, etc.)	AHs stos	AHs					tion	change)	onductiv								Cadmium Chromium Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox 9 NDRIA NSW 94 0400 F: 03	2015	499			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	/TRH/BTEX			S	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	ring Suite	S					HM ^B / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory		S	ampling	WATER		HERS	AA/	HM A /	HM A /	BTEX	VOCs	Asbestos	besto	/ CE	/ EC	Dewatering	sPOCAS	PFAS				TCLP H	Cadmium Chromium Lead
ID	ID	Туре	Date		MA	SOIL	ITO	ΞŎ	Ĩ	I	BT	2	As	As	Hd	Hd	De	SР	Ц				TC	Mercury Nickel
B1209-09-10.		JULB	911	I PM		X											4							Dewatering Suite pH & EC
BH 210_0,2-0.3	17	1	1	1		1		\times																TDS / Turbidity NTU Hardness
0.9-1.0																								Total Cyanide Metals (AI, As, Cd, Cr,
B1211-0.2-0.3	18							X																Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4)
0.8-0.9	10								×															BTEX PAH Total Phenol
34212-0.2.0.3	20							\times																LABORATORY TURNAROUND
0.7-08		U							*															Standard
QDI	21	J				J			-	·×														24 Hours
QRI	22	S,P,UC			X					X														48 Hours
QRBI		J	U		×																			72 Hours
QTBI	23	VC	(ab	Prepore	d	\times					X													Other
QTSI .											X													
Container Type: J= solvent washed, aci S= solvent washed, aci P= natural HDPE plasti	d rinsed gla		s jar		-			No. ANALY WILLIAM	stand				vere co ng pro			ccorda	ance	F	Report	with E	I Waste	e Clas	sificatio	on Table
VC= glass vial, Teflon ZLB = Zip-Lock Bag						Samp Prii		ame (EI)				Recei Prin	ved by	(SGS):							nents:			
						1		S	2	/								Si	e	1	st	7	ag	U~
				, 55 Miller S NT NSW 2			nature	5		>		Sign	ature										0	
oigue	trali	2		9516 0722	000	Date		10/1	1/2	0		Date)											
Contamination Remed	LI Clinitiation Geotech	nical	Ŭ	ustralia.cor	n.au			FANT				lah (Deler		lie									
R			COC March 2	018 FORM v.4 - SGS		Plea	se e-r	nail lab	orato	ry res	ults to:	ab(yela	ustra	lla.co	m.a	u							

CLIENT DETAILS	S	LABORATORY DETA	ILS
Contact	Alejandra Beltran	Manager	Huong Crawford
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	E24175.E02 28 Elizabeth St. Liverpool E24175.E02 23	Samples Received Report Due SGS Reference	Tue 10/11/2020 Tue 17/11/2020 SE213398

SUBMISSION DETAILS

This is to confirm that 23 samples were received on Tuesday 10/11/2020. Results are expected to be ready by COB Tuesday 17/11/2020. Please quote SGS reference SE213398 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 10/11/2020 Yes 8.3°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 22 Soil, 1 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

11 soil and 1 water samples have been placed on hold as no tests have been assigned for them by the client. These samples will not be processed.

QTS1 not received.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 Australia Australia f +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

Project E24175.E02 28 Elizabeth St. Liverpool

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH201M_0.5-0.6	29	14	26	11	7	10	11	7
002	BH201M_1.2-1.3	-	-	26	-	7	10	11	7
003	BH202M_0.4-0.5	29	14	26	11	7	10	11	7
004	BH202M_2.4-2.5	-	-	-	-	1	10	11	7
005	BH202M_3.9-4.0	-	-	26	-	7	10	11	7
006	BH203_0.1-0.2	29	14	26	11	7	10	11	7
007	BH203_0.6-0.7	-	-	26	-	7	10	11	7
008	BH204_0.2-0.3	29	14	26	11	7	10	11	7
009	BH205M_0.2-0.3	29	14	26	11	7	10	11	7
010	BH205M_1.3-1.4	-	-	26	-	7	10	11	7
011	BH206_0.2-0.3	29	14	26	11	7	10	11	7
012	BH206_0.6-0.7	-	-	26	-	7	10	11	7
013	BH207_0.2-0.3	29	14	26	11	7	10	11	7
014	BH207_0.9-1.0	-	-	26	-	7	10	11	7
015	BH208_0.2-0.3	29	14	26	11	7	10	11	7
016	BH209_0.2-0.3	29	14	26	11	7	10	11	7
017	BH210_0.2-0.3	29	14	26	11	7	10	11	7
018	BH211_0.2-0.3	29	14	26	11	7	10	11	7
019	BH211_0.8-0.9	-	-	26	-	7	10	11	7
020	BH212_0.2-0.3	29	14	26	11	7	10	11	7
021	QD1	-	-	-	-	7	10	11	7
023	QTB1	-	-	-	-	-	-	11	-

_ CONTINUED OVERLEAF

Testing as per this table shall commence immediately unless the client intervenes with a correction .

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document.

The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

CLIENT DETAILS

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS -

No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	BH201M_0.5-0.6	2	1	1
002	BH201M_1.2-1.3	-	1	1
003	BH202M_0.4-0.5	2	1	1
004	BH202M_2.4-2.5	-	-	1
005	BH202M_3.9-4.0	-	1	1
006	BH203_0.1-0.2	2	1	1
007	BH203_0.6-0.7	-	1	1
008	BH204_0.2-0.3	2	1	1
009	BH205M_0.2-0.3	2	1	1
010	BH205M_1.3-1.4	-	1	1
011	BH206_0.2-0.3	2	1	1
012	BH206_0.6-0.7	-	1	1
013	BH207_0.2-0.3	2	1	1
014	BH207_0.9-1.0	-	1	1
015	BH208_0.2-0.3	2	1	1
016	BH209_0.2-0.3	2	1	1
017	BH210_0.2-0.3	2	1	1
018	BH211_0.2-0.3	2	1	1
019	BH211_0.8-0.9	-	1	1
020	BH212_0.2-0.3	2	1	1
021	QD1	-	1	1
023	QTB1	-	-	1

Project E24175.E02 28 Elizabeth St. Liverpool

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E24175.E02 28 Elizabeth St. Liverpool

SUMMARY	OF ANALYSIS					
No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
022	QR1	1	7	9	11	7

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

Sheet of	1				Sam	ple N	latrix								Ana	lysis				 		Comments
Site: 78 Eli	rabeth Liven	st poral		Project No: E24175	Εo	2.	t, etc.)	AHs tos	AHs					tion	exchange)	onductivity)		•				HM A Arsenic Cadmium Chromium Copper Lead
Laboratory:	Envirola 12 Ashl CHATS	ab Services ey Street, WOOD NSV 910 6200					OTHERS (i.e. Fibro, Paint, etc.)	A /TRH/BTEX/PAHs P/OP/PCB/Asbestos	НМ [≜] /ТКН/ВТЕХ/РАНs	HM ^A /TRH/BTEX			SO	Asbestos Quantification	pH / CEC (cation exc	pH / EC (electrical conductivity)	Dewatering Suite	SF			НМ ^В / РАН	Mercury Nickel Zinc HM <u>B</u> Arsenic Cadmium
Sample ID	Laboratory ID	Container Type	Sa Date	impling Time	WATER	SOIL	OTHERS	HM A /	HM A /	HM A /	BTEX	VOCs	Asbestos	Asbest	pH / CI	pH / E(Dewate	sPOCAS	PFAS		TCLP	Chromium Lead Mercury Nickel
0-1	1	J	9/1	I AM		×		- <i>Se</i>	e_ '	erne J7	Li1		po									Dewatering Suite pH & EC TDS / Turbidity NTU Hardness Total Cyanide Metals (AI, As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX PAH
															12/	Service Shley 3 ISW 265 918 628	ŧ			 		Total Phenol LABORATORY TURNAROUND
												Time Rece Tenn		25 ed: 16 ed: 16		NS RO R)				24 Hours
							 					: : -									 	JAH .
Container Type: J= solvent washed, act S= solvent washed, act	id rinsed gla		ss jar		<u> </u>	Investigator: I attest that these samples were collected in accordance with standard EI field sampling procedures.												on Table				
P= natural HDPE plast VC= glass vial, Teflon ZLB = Zip-Lock Bag		S		, 55 Miller Si NT NSW 20		Date Date											ejàndra.					
elaus Contamination + Remee	tralin Geotech	a	lab@eia	9516 0722 ustralia.com 018 FORM v.4 - SGS	.au	IME	POR	r <u>⊖/</u> TÁN [°] mail la		2x		<u>\</u>	0/11				 iu					

. INÍ	Jessica Hie
	From: Alejandra Beltran - ElAustralia <alejandra.beltran@eiaustralia.com.au> Sent: Friday, 20 November 2020 10:55 AM Simon Song; Customer Service Simon Song; Customer Service Subject: RE: Sample Receipt for 255405 E24175.E02, 28 Elizabeth St Liverpool CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.</alejandra.beltran@eiaustralia.com.au>
11.1	Hi Enviro lab,
	Can you pelase test for HM ^A , TRH BTEX on 72hr TAT.
	With thanks,
	Alejandra Beltran Beng. (Civil) civil/Environmental Engineer 02 9516 0722 M 0433 512 322 alejandra.beltran@eiaustralia.com.au suite 6.01, 55 Miller Street Pyrmont, NSW 2009 www.eiaustralia.com.au Civinomental I. Geotechnical / Structural I. Civil / Hazardous Materials Material is a proud member of the Australian Contaminated Land Consultants Association and the Australian Geomechanics Societies Material is a proud member of the Australian Contaminated Land Consultants Association and the Australian Geomechanics Societies Control DENTIALITY - This email contains confidential and privileged information. Yo are not the intended recipient, our apologies - please destroy it and notive so that we can appropriately re-address it. Decisioner, copying, distribution or use of the contents of this email is strictly prohibited. Pase consider the environment before printing this email.
	From: Simon Song [mailto:SSong@envirolab.com.au] Sent: Wednesday, 11 November 2020 12:08 PM To: Laboratory Results - EIAustralia Subject: Sample Receipt for 255405 E24175.E02, 28 Elizabeth St Liverpool Please refer to attached for: a copy of the COC/paperwork received from you a copy of our Sample Receipt Advice (SRA) Please open and read the SRA as it contains important information. Please let the lab know immediately if there are any issues.
	Results will be available by 6.30pm on the date indicated.
	PLEASE NOTE COMBO PRICES WILL ONLY APPLY IF COMBOS ARE SELECTED ON COC.
	We have a new reporting format and would welcome your feedback. Sydney@envirolab.com.au Please note that subcontracted testing or non routine testing may take significantly longer than just the standard 5 day TAT, contact the lab to get an approximate due date. Inquiries should be made directly to: Customerservice@envirolab.com.au

the second se

Sheet of		-			Sam	nple Ma	atrix								Ana	lysis				sta	Shog		Comments
Site: 78 Eliza Lives	abeth por)	St, Nsu	-	oject No:	1		etc.)	NHS OS	Hs					uo	lange)	nductivity)				ompounds (A	Hydrocarbo		HMA H + A Arsenic Cadmium Chromium Copper
Laboratory:	ALEXA	33 Maddox NDRIA NSW					(i.e. Fibro, Paint, etc.)	<pre>/TRH/BTEX/PAHs /OP/PCB/Asbestos</pre>	нм ≜7ткн/втех/ранs	TRH/BTEX			S	Asbestos Quantification	CEC (cation exchange)	EC (electrical conductivity)	Dewatering Suite	•				M ^B / PAH	Lead Mercury Nickel Zinc HM <u>B</u> Arsenic
Sample ID	Laboratory ID	Container Type	Sampl	ling Time	WATER	SOIL	OTHERS (i.e.	HM A /T	HMAT	HM ^A /T	BTEX	VOCs	Asbestos	Asbesto	pH / CE(pH / EC	Dewater	sPOCAS	PFAS	Phenolic	Chlovinstea	TCLP HM	Cadmium Chromium Lead Mercury
BHZOIM-1	t	S,P, N	17/11	Am	X				×			X								X	X		Nickel Dewatering Suite
BH202M-1	2	I	1		[X			\times								X	X		pH & EC TDS / Turbidity NT Hardness
BH205M-1	3								X			X								X	X		Total Cyanide Metals (Al, As, Cd,
\$4200_GWQ7	4									X		/									<i>,</i>		Cu, Pb, Hg, Ni, Zn TRH (F1, F2, F3, F BTEX
GWORI	5									×													PAH Total Phenol
GWQRB		V	V	V																			LABORATOR TURNAROU
GWQTSI	6	VC	Lab P	epaned		/					X												Standard
GWQTB	7	1C	001	quire	U						X					_ :	GS E	HS S	Sydn	ey C	ос		24 Hours
																	SE	21	36	72			48 Hours
																							72 Hours
																							Other
Container Type:																							
J= solvent washed, aci S= solvent washed, aci	id rinsed gla		ss jar			Invest	igato							ollecte		ccord	ance	F	Report	with E	I Waste Cla	assificati	on Table
P= natural HDPE plasti VC= glass vial, Teflon \$ ZLB = Zip-Lock Bag						Sample		ame (El):					(SGS):				Sam	pler's	Comn	nents:	A	
LLD - ZIP-LUCK Day						Print		5	SL			Ge	ange	02	Zhi			DP	leas	e	CC	Alejo	andra. E
12		S	uite 6.01, 55 PYRMONT			Signa	ture	ß	C	>	/	l	ature)			1	2	Plea	R	Sen	d	andra. E 84 200_GW
Piaur	trali	a	Ph: 951	6 0722		Date		17/	11/	to	020	Date	/11	120	Q1	15	Opm				nvino (c		
	ation Geotechi	nical	COC March 2018 FO		au	IMPO					ulto t-			ustra			'		to	er		B.	

CLIENT DETAIL	s	LABORATORY DETA	NLS	
Contact	Alejandra Beltran	Manager	Huong Crawford	
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental	
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E24175 28 Elizabeth St, Liverpool NSW	Samples Received	Tue 17/11/2020	
Order Number	E24175	Report Due	Thu 19/11/2020	
Samples	7	SGS Reference	SE213672	

- SUBMISSION DETAILS

This is to confirm that 7 samples were received on Tuesday 17/11/2020. Results are expected to be ready by COB Thursday 19/11/2020. Please quote SGS reference SE213672 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 17/11/2020 Yes 18°C Two Days

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 7 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS

1 sample has been placed on hold as no tests have been assigned for it. This sample will not be processed.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

Project E24175 28 Elizabeth St, Liverpool NSW

SUMMAR	Y OF ANALYSIS			1		1	1	1
No.	Sample ID	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Total Phenolics in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH201M-1	1	22	1	8	9	78	7
002	BH202M-1	1	22	1	8	9	78	7
003	BH205M-1	1	22	1	8	9	78	7
004	BH200_GWQD1	1	-	-	7	9	11	7
005	GWQR1	1	-	-	7	9	11	7
006	GWQTS1	-	-	-	-	-	11	-
007	GWQTB1	-	-	-	-	-	11	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

ſ	Sheet	of					Sam	ple N	latrix								Ana	lysis			<u> </u>					Comments
	^{Site:} 78 I	Elizat L	eth iverf	St. 2011 .	ŀ	Project No: E24175			t, etc.)	AHs ttos	AHs					ion	thange)	conductivity)	· · · · · · · · · · · · · · · · · · ·							HMA Arsenic Cadmium Chromlum Copper Lead
	Laboratory		Enviro 12 Ash CHATS	lab Services Iley Street, SWOOD NSV 9910 6200					OTHERS (i.e. Fibro, Paint, etc.)	A /TRH/BTEX/PAHs P/OP/PCB/Asbestos	/TRH/BTEX/PAHs	HM ^Å /TRH/BTEX			SO	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical cc	ering Suite	ഗ					HM ^B / PAH	Mercury Nickel Zinc HM ^B Arsenic Cadmium
	Sample ID)	Laboraton ID	y Container Type	Sa Date	npling Time	WATER	SOIL	OTHERS	HM ^A /	HM ≜ <i>Г</i>	HM A /	втех	vocs	Asbestos	Asbest	pH / CE	pH / EC	Dewatering	sPOCAS	PFAS				TCLP }	Chromium Lead Mercury
\mathcal{V}	BH200-	GWO	τ1	SP,VC	17-1	1 Am	X	•				X														Nickel Dewatering Suite
																										pH & EC TDS / Turbidity NTU Hardness
																										Total Cyanide Metals (Al, As, Cd, Cr,
												•			-	in the	ILAO	r IV	12 A	shley S SW 20(st 7		-	-		Cu, Pb, Hg, Ni, Zn) -TRH-(F1; F2; F3, F4) BTEX
																6800	168 168 7	Ph	(02) 9	910 62	0					PAH Total Phenol
	•																		X/ ** 2							LABORATORY TURNAROUND
	· · · · · · · · ==											-				Date	Recei Recei p: 00 ling: to urity:	ved:	152	0.						Standard
																Rec Ten	p: O	DAmb	ent ack							24 Hours
																Coc Sec	urity:	ntact/f	roken	None						48 Hours
																										72 Hours
																										Other
	Container Tu															_				•						
	S= solvent wa	shed, acio shed, aci	d rinsed gl	eflon sealed, glas ass bottle	is jar		:	Inves	tigato	r: I atte with			e sam field s					ccord	ance	F	leport	with E	l Wast	e Clas	sificatio	on Table
	P= natural HD VC= glass via ZLB = Zip-Loc	I, Teflon S						Samp Prir		ame (El)				Recei Prir	ived by	(Enviro	olab) S	¥0		1	•		nents:	 	11.3	······································
	• • • •					<u>_</u>				<u> </u>	\leq	. <u></u>		Ċ	Jasan		erj_			He	20E	(CC.	F	thej	andra. I
						55 Miller St IT NSW 200			ature	5	\leq	2_			ature 🗸 D	UAA										
	مام		Frali	ia	Ph: 9	516 0722		Date	<u> ľ</u>	1/1		20	0	• Date	18/11	120		157	10	•						
	Contaminat.	an i Remod	Ation - Depter	incol	-	stralia.com. 8 FORM V.4 - SGS	au			FANT nail lat		ry res	ults to:	: lab(@eia	ustra	ilia.co	om.a	u							

Sheet of				<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Som	ple N			,							lysis				20	ੇ ਕ			Comments
			Г	Draigat No.				` 			r	<u> </u>				19313				Asta	-Èi			HMA # + AL.
Site: 78 Eliza	abeth	SI,	ŀ	Project No:	4											/ity)					, MO			Arsenic TAL.
site: 28 Eliza Liver	lead	Nsu	/	E2417	↓ .		ıt, etc.)	AHs	AHs					tion	change)	onductiv				(ompounds	Shadwalowsky			Chromium Copper Lead
Laboratory:	ALEXAN	stralia 33 Maddox S NDRIA NSW 2 94 0400 F: 02	2015	99			OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	НМ ≜/ТТКН/ВТЕХ/РАНS	/TRH/BTEX			S	Asbestos Quantification	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	Dewatering Suite	د		Phenolic Con	E		TCLP HM ^B / PAH	Mercury Nickel Zinc HM ^B Arsenic
Sample	Laboratory	Container	Sai	mpling	Ë		ERS	P/OF	ATT	\triangleleft	X	vocs	Asbestos	pesto	/ CĒ	/ EC	vatei	sPOCAS	SA	еh	104		НЫ	Cadmium Chromium
ID	ID	Туре	Date	Time	WATER	SOIL	OTH	ΞO	HM	МН	BTEX	0 >	Ast	Ast	Hq	Hď	De	sP(PFAS	4d	Q		2	Lead Mercury Nickel
BHZOIM-1		S, P, 1/C	[7]	11 AM	X				X			X								Х	Χ			Dewatering Suite
BH202M-1		I I			1				X			\mathbf{X}						_	_	X	$\overline{\mathbf{X}}$			pH & EC TDS / Turbidity NTU Hardness
BHVOSM-1					$\left \right $				X			\mathbf{X}						•		X	$\langle \chi \rangle$			Total Cyanide Metals (Al, As, Cd, Cr,
BH200_GWQ7									<u>/</u>	X		/								/~				Cu, Pb, Hg, Ni, Zn) TRH (F1, F2, F3, F4) BTEX
GWQRI										$\overleftarrow{\times}$														PAH Total Phenol
GWQRBI																								LABORATORY TURNAROUND
GWQTSI		VC		Repared		/					X							•						Standard
GWQTB		W.	Lab	Inclured	. U						X													24 Hours
			-																	_				48 Hours
																		_						72 Hours
																	-							Other
			·						i.											1				
Container Type: J= solvent washed, aci S= solvent washed, aci	d rinsed gla		sjar		•	Inve	stigate	or: I att with				nples v sampli				iccorda	ance	F	Report	with El	l Waste	e Classi	ficatio	on Table
P= natural HDPE plasti VC= glass vial, Teflon S						Samp	oler's N	ame (El					ived by		-			Sam	pler's	Comn	nents:			
ZLB = Zip-Lock Bag				<u> </u>		Pri	nt	<	SL_	_		Prir	nt					DF	lecs	2	CC	Al	'ej`a	ndra B
				55 Miller St		Sigi	nature	ß	.7	>	/	Sign	ature					2	Plaa	P	(Cend	<u> </u>	ndra. B. 84200-GWOT/
	hun I:			IT NSW 200 516 0722	09	Date 17/11/2020 Date																		
		ы <mark>Б</mark>		stralia.com.	.au	IMPORTANT: / Please e-mail laboratory results to: lab@eiaustralia.com.au									to	ev	1 1110 CK	10b	•					
Construction - Addition				Plea	ise e-	mail Ial	borato	ry res	ults to	: lab(@eia	ustra	alia.c	om.a	u	-to enviro lab. 25 6 089								

.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

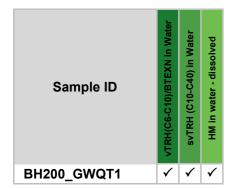
SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Alejandra Beltran

Sample Login Details	
Your reference	E24175
Envirolab Reference	256059
Date Sample Received	18/11/2020
Date Instructions Received	18/11/2020
Date Results Expected to be Reported	20/11/2020

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	1 Water
Turnaround Time Requested	2 days
Temperature on Receipt (°C)	10.8
Cooling Method	None
Sampling Date Provided	YES

Comments	
Nil	


Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Appendix G – Laboratory Analytical Reports

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Alejandra Beltran	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24175.E02 28 Elizabeth St. Liverpool	SGS Reference	SE213398 R0
Order Number	E24175.E02	Date Received	10/11/2020
Samples	23	Date Reported	17/11/2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample #13: Asbestos found in approx 10x6x3mm cement sheet fragments. Sample #16: Asbestos found in approx 10x5x3mm cement sheet fragment. Sample #17: Asbestos found in approx 25x10x4mm cement sheet fragments.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

C

Yusuf KUTHPUDIN Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Dong LIANG

Metals/Inorganics Team Leader

Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

Kamrul AHSAN

Senior Chemist

www.sgs.com.au

SE213398 R0

VOC's in Soil [AN433] Tested: 11/11/2020

			BH201M_0.5-0.6	BH201M_1.2-1.3	BH202M_0.4-0.5	BH202M_2.4-2.5	BH202M_3.9-4.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.001	SE213398.002	SE213398.003	SE213398.004	SE213398.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1

			BH203_0.1-0.2	BH203_0.6-0.7	BH204_0.2-0.3	BH205M_0.2-0.3	BH205M_1.3-1.4
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.006	SE213398.007	SE213398.008	SE213398.009	SE213398.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH206_0.2-0.3	BH206_0.6-0.7	BH207_0.2-0.3	BH207_0.9-1.0	BH208_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- 3012	-	- 3012	-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.011	SE213398.012	SE213398.013	SE213398.014	SE213398.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH209_0.2-0.3	BH210_0.2-0.3	BH211_0.2-0.3	BH211_0.8-0.9	BH212_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020
PARAMETER	UOM	LOR	SE213398.016	SE213398.017	SE213398.018	SE213398.019	SE213398.020
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

VOC's in Soil [AN433] Tested: 11/11/2020 (continued)

			QD1	QTB1
			SOIL	SOIL
PARAMETER	UOM	LOR	- 9/11/2020 SE213398.021	- 9/11/2020 SE213398.023
Benzene	mg/kg	0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1

SE213398 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 11/11/2020

			BH201M_0.5-0.6	BH201M_1.2-1.3	BH202M_0.4-0.5	BH202M_2.4-2.5	BH202M_3.9-4.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.001	SE213398.002	SE213398.003	SE213398.004	SE213398.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH203_0.1-0.2	BH203_0.6-0.7	BH204_0.2-0.3	BH205M_0.2-0.3	BH205M_1.3-1.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.006	SE213398.007	SE213398.008	SE213398.009	SE213398.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH206_0.2-0.3	BH206_0.6-0.7	BH207_0.2-0.3	BH207_0.9-1.0	BH208_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.011	SE213398.012	SE213398.013	SE213398.014	SE213398.015
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH209_0.2-0.3	BH210_0.2-0.3	BH211_0.2-0.3	BH211_0.8-0.9	BH212_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.016	SE213398.017	SE213398.018	SE213398.019	SE213398.020
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			QD1
			SOIL
			9/11/2020
PARAMETER	UOM	LOR	SE213398.021
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 11/11/2020

			BH201M_0.5-0.6	BH201M_1.2-1.3	BH202M_0.4-0.5	BH202M_2.4-2.5	BH202M_3.9-4.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	9/11/2020 SE213398.001	9/11/2020 SE213398.002	9/11/2020 SE213398.003	9/11/2020 SE213398.004	9/11/2020 SE213398.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	50	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH203_0.1-0.2	BH203_0.6-0.7	BH204_0.2-0.3	BH205M_0.2-0.3	BH205M_1.3-1.4
			SOIL	SOIL -	SOIL -	SOIL	SOIL
PARAMETER	UOM	LOR	9/11/2020 SE213398.006	9/11/2020 SE213398.007	9/11/2020 SE213398.008	9/11/2020 SE213398.009	9/11/2020 SE213398.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	47	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			BH206_0.2-0.3	BH206_0.6-0.7	BH207_0.2-0.3	BH207_0.9-1.0	BH208_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020
PARAMETER	UOM	LOR	SE213398.011	SE213398.012	SE213398.013	SE213398.014	SE213398.015
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	48
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 11/11/2020 (continued)

			BH209_0.2-0.3	BH210_0.2-0.3	BH211_0.2-0.3	BH211_0.8-0.9	BH212_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.016	SE213398.017	SE213398.018	SE213398.019	SE213398.020
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	120	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	60	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	160	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	180	<110	<110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			QD1
PARAMETER	UOM	LOR	SOIL - 9/11/2020 SE213398.021
TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	45	<45
TRH C29-C36	mg/kg	45	<45
TRH C37-C40	mg/kg	100	<100
TRH >C10-C16	mg/kg	25	<25
TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120
TRH C10-C36 Total	mg/kg	110	<110
TRH >C10-C40 Total (F bands)	mg/kg	210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 11/11/2020

			BH201M_0.5-0.6	BH201M_1.2-1.3	BH202M_0.4-0.5	BH202M_3.9-4.0	BH203_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- 3012	-	-	-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.001	SE213398.002	SE213398.003	SE213398.005	SE213398.006
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	<0.1	<0.1	0.1	0.2
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.3	<0.1	<0.1	<0.1	0.6
Pyrene	mg/kg	0.1	0.3	<0.1	<0.1	<0.1	0.6
Benzo(a)anthracene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	0.3
Chrysene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	0.3
Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	0.4
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Benzo(a)pyrene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	0.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.3</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	0.3
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>0.4</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	0.4
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.4</td></lor=lor>	TEQ (mg/kg)	0.2	0.2	<0.2	<0.2	<0.2	0.4
Total PAH (18)	mg/kg	0.8	1.3	<0.8	<0.8	<0.8	3.0
Total PAH (NEPM/WHO 16)	mg/kg	0.8	1.3	<0.8	<0.8	<0.8	3.0

			BH203_0.6-0.7	BH204_0.2-0.3	BH205M_0.2-0.3	BH205M_1.3-1.4	BH206_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	- SUIL	-	- SUIL	-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.007	SE213398.008	SE213398.009	SE213398.010	SE213398.011
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.5
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.1
Fluoranthene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1	1.3
Pyrene	mg/kg	0.1	<0.1	0.3	<0.1	<0.1	1.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1	0.7
Chrysene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1	0.6
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.2	<0.1	<0.1	0.6
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.5
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.3
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	0.3
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.7</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	0.7
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>0.8</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	0.8
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.7</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	0.7
Total PAH (18)	mg/kg	0.8	<0.8	1.1	<0.8	<0.8	6.3
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	1.1	<0.8	<0.8	6.3

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 11/11/2020 (continued)

			BH206_0.6-0.7	BH207_0.2-0.3	BH207_0.9-1.0	BH208_0.2-0.3	BH209_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020
PARAMETER	UOM	LOR	SE213398.012	SE213398.013	SE213398.014	SE213398.015	SE213398.016
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.6	0.2
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.2	<0.1	2.1	0.2
Pyrene	mg/kg	0.1	<0.1	0.2	<0.1	1.8	0.2
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	1.0	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	0.9	0.2
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	1.1	0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.4	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.8	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.5	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.5	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>1.1</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	1.1	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>1.2</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	1.2	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>1.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	1.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	10	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	10	<0.8

			BH210_0.2-0.3	BH211_0.2-0.3	BH211_0.8-0.9	BH212_0.2-0.3
					0.01	0.01
			SOIL	SOIL	SOIL	SOIL
			9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.017	SE213398.018	SE213398.019	SE213398.020
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	0.5	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	3.7	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	0.8	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	4.4	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	4.2	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	2.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	1.8	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	1.7	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	0.5	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	1.3	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.5	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.5	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>1.8</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	1.8	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>1.9</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	1.9	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>1.9</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	1.9	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	22	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	22	<0.8	<0.8	<0.8

ANALYTICAL RESULTS

SE213398 R0

OC Pesticides in Soil [AN420] Tested: 11/11/2020

			BH201M_0.5-0.6	BH202M_0.4-0.5	BH203_0.1-0.2	BH204_0.2-0.3	BH205M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.001	SE213398.003	SE213398.006	SE213398.008	SE213398.009
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 11/11/2020 (continued)

			BH206_0.2-0.3	BH207_0.2-0.3	BH208_0.2-0.3	BH209_0.2-0.3	BH210_0.2-0.3
			SOIL - 9/11/2020	SOIL - 9/11/2020	SOIL - 9/11/2020	SOIL - 9/11/2020	SOIL - 9/11/2020
PARAMETER	UOM	LOR	SE213398.011	SE213398.013	SE213398.015	SE213398.016	SE213398.017
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

OC Pesticides in Soil [AN420] Tested: 11/11/2020 (continued)

			BH211_0.2-0.3	BH212_0.2-0.3
			SOIL -	SOIL -
PARAMETER	UOM	LOR	9/11/2020 SE213398.018	9/11/2020 SE213398.020
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1

OP Pesticides in Soil [AN420] Tested: 11/11/2020

			BH201M_0.5-0.6	BH202M_0.4-0.5	BH203_0.1-0.2	BH204_0.2-0.3	BH205M_0.2-0.3
			SOIL - 9/11/2020	SOIL - 9/11/2020	SOIL - 9/11/2020	SOIL - 9/11/2020	SOIL - 9/11/2020
PARAMETER	UOM	LOR	SE213398.001	SE213398.003	SE213398.006	SE213398.008	SE213398.009
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH206_0.2-0.3	BH207_0.2-0.3	BH208_0.2-0.3	BH209_0.2-0.3	BH210_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020
PARAMETER	UOM	LOR	SE213398.011	SE213398.013	SE213398.015	SE213398.016	SE213398.017
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			BH211_0.2-0.3	BH212_0.2-0.3
			SOIL	SOIL
			9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.018	SE213398.020
Dichlorvos	mg/kg	0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7

SE213398 R0

PCBs in Soil [AN420] Tested: 11/11/2020

			BH201M_0.5-0.6	BH202M_0.4-0.5	BH203_0.1-0.2	BH204_0.2-0.3	BH205M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.001	SE213398.003	SE213398.006	SE213398.008	SE213398.009
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH206_0.2-0.3	BH207_0.2-0.3	BH208_0.2-0.3	BH209_0.2-0.3	BH210_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 9/11/2020 SE213398.011	SOIL - 9/11/2020 SE213398.013	SOIL - 9/11/2020 SE213398.015	SOIL - 9/11/2020 SE213398.016	SOIL - 9/11/2020 SE213398.017
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH211_0.2-0.3	BH212_0.2-0.3
PARAMETER	UOM	LOR	SOIL - 9/11/2020 SE213398.018	SOIL - 9/11/2020 SE213398.020
Arochlor 1016	mg/kg	0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1

SE213398 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 11/11/2020

			BH201M_0.5-0.6	BH201M_1.2-1.3	BH202M_0.4-0.5	BH202M_2.4-2.5	BH202M_3.9-4.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020
PARAMETER	UOM	LOR	SE213398.001	SE213398.002	SE213398.003	SE213398.004	SE213398.005
Arsenic, As	mg/kg	1	8	8	2	-	<1
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	-	<0.3
Chromium, Cr	mg/kg	0.5	17	11	2.5	-	0.7
Copper, Cu	mg/kg	0.5	13	12	1.7	-	6.5
Lead, Pb	mg/kg	1	16	11	8	3	4
Nickel, Ni	mg/kg	0.5	4.3	2.7	1.0	-	0.9
Zinc, Zn	mg/kg	2	17	8.7	16	-	3.1

			BH203_0.1-0.2	BH203_0.6-0.7	BH204_0.2-0.3	BH205M_0.2-0.3	BH205M_1.3-1.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020
PARAMETER	UOM	LOR	SE213398.006	SE213398.007	SE213398.008	SE213398.009	SE213398.010
Arsenic, As	mg/kg	1	7	4	6	7	9
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	17	9.6	12	17	15
Copper, Cu	mg/kg	0.5	30	7.7	15	5.6	9.0
Lead, Pb	mg/kg	1	160	10	75	17	12
Nickel, Ni	mg/kg	0.5	8.0	4.6	6.3	3.2	1.6
Zinc, Zn	mg/kg	2	250	6.7	84	12	11

			BH206_0.2-0.3	BH206_0.6-0.7	BH207_0.2-0.3	BH207_0.9-1.0	BH208_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.011	SE213398.012	SE213398.013	SE213398.014	SE213398.015
Arsenic, As	mg/kg	1	6	4	4	7	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	13	11	8.7	10	14
Copper, Cu	mg/kg	0.5	14	7.2	10	7.9	28
Lead, Pb	mg/kg	1	43	9	49	10	170
Nickel, Ni	mg/kg	0.5	8.3	3.4	3.9	0.9	7.7
Zinc, Zn	mg/kg	2	58	8.9	42	6.8	170

			BH209_0.2-0.3	BH210_0.2-0.3	BH211_0.2-0.3	BH211_0.8-0.9	BH212_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020	- 9/11/2020
PARAMETER	UOM	LOR	SE213398.016	SE213398.017	SE213398.018	SE213398.019	SE213398.020
Arsenic, As	mg/kg	1	8	6	4	4	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.5	80	14	5.3	12	9.0
Copper, Cu	mg/kg	0.5	29	35	5.1	8.9	7.5
Lead, Pb	mg/kg	1	24	180	41	8	25
Nickel, Ni	mg/kg	0.5	87	8.1	3.1	2.7	4.5
Zinc, Zn	mg/kg	2	94	240	65	11	20

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 11/11/2020

/ P P			QD1
			SOIL
			- 9/11/2020
PARAMETER	UOM	LOR	SE213398.021
Arsenic, As	mg/kg	1	4
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.5	15
Copper, Cu	mg/kg	0.5	9.6
Lead, Pb	mg/kg	1	13
Nickel, Ni	mg/kg	0.5	3.0
Zinc, Zn	mg/kg	2	11

SE213398 R0

Mercury in Soil [AN312] Tested: 11/11/2020

			BH201M_0.5-0.6	BH201M_1.2-1.3	BH202M_0.4-0.5	BH202M_3.9-4.0	BH203_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.001	SE213398.002	SE213398.003	SE213398.005	SE213398.006
Mercury	mg/kg	0.05	0.12	<0.05	<0.05	<0.05	0.70

			BH203_0.6-0.7	BH204_0.2-0.3	BH205M_0.2-0.3	BH205M_1.3-1.4	BH206_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.007	SE213398.008	SE213398.009	SE213398.010	SE213398.011
Mercury	mg/kg	0.05	<0.05	0.31	<0.05	<0.05	0.20

			BH206_0.6-0.7	BH207_0.2-0.3	BH207_0.9-1.0	BH208_0.2-0.3	BH209_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.012	SE213398.013	SE213398.014	SE213398.015	SE213398.016
Mercury	mg/kg	0.05	<0.05	0.28	<0.05	0.29	0.05

			BH210_0.2-0.3	BH211_0.2-0.3	BH211_0.8-0.9	BH212_0.2-0.3	QD1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.017	SE213398.018	SE213398.019	SE213398.020	SE213398.021
Mercury	mg/kg	0.05	0.32	0.10	<0.05	0.05	<0.05

SE213398 R0

Moisture Content [AN002] Tested: 11/11/2020

			BH201M_0.5-0.6	BH201M_1.2-1.3	BH202M_0.4-0.5	BH202M_2.4-2.5	BH202M_3.9-4.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.001	SE213398.002	SE213398.003	SE213398.004	SE213398.005
% Moisture	%w/w	1	26.0	21.0	18.4	19.8	18.4

			BH203_0.1-0.2	BH203_0.6-0.7	BH204_0.2-0.3	BH205M_0.2-0.3	BH205M_1.3-1.4
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.006	SE213398.007	SE213398.008	SE213398.009	SE213398.010
% Moisture	%w/w	1	17.2	18.6	23.4	18.1	23.7

			BH206_0.2-0.3	BH206_0.6-0.7	BH207_0.2-0.3	BH207_0.9-1.0	BH208_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.011	SE213398.012	SE213398.013	SE213398.014	SE213398.015
% Moisture	%w/w	1	12.8	19.5	16.4	18.9	17.7

			BH209_0.2-0.3	BH210_0.2-0.3	BH211_0.2-0.3	BH211_0.8-0.9	BH212_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.016	SE213398.017	SE213398.018	SE213398.019	SE213398.020
% Moisture	%w/w	1	8.6	17.3	12.8	19.8	17.6

			QD1	QTB1
			SOIL	SOIL
			- 9/11/2020	- 9/11/2020
PARAMETER	UOM	LOR	SE213398.021	SE213398.023
% Moisture	%w/w	1	22.3	<1.0

SE213398 R0

Fibre Identification in soil [AN602] Tested: 13/11/2020

			BH201M_0.5-0.6	BH202M_0.4-0.5	BH203_0.1-0.2	BH204_0.2-0.3	BH205M_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.001	SE213398.003	SE213398.006	SE213398.008	SE213398.009
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH206_0.2-0.3	BH207_0.2-0.3	BH208_0.2-0.3	BH209_0.2-0.3	BH210_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/11/2020	9/11/2020	9/11/2020	9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.011	SE213398.013	SE213398.015	SE213398.016	SE213398.017
Asbestos Detected	No unit	-	No	Yes	No	Yes	Yes
Estimated Fibres*	%w/w	0.01	<0.01	>0.01	<0.01	>0.01	>0.01

			BH211_0.2-0.3	BH212_0.2-0.3
			SOIL	SOIL
			9/11/2020	9/11/2020
PARAMETER	UOM	LOR	SE213398.018	SE213398.020
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

VOCs in Water [AN433] Tested: 13/11/2020

			QR1
PARAMETER	UOM	LOR	WATER - 9/11/2020 SE213398.022
Benzene	μg/L	0.5	<0.5
Toluene	μg/L	0.5	<0.5
Ethylbenzene	µg/L	0.5	<0.5
m/p-xylene	µg/L	1	<1
o-xylene	µg/L	0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5
Total BTEX	µg/L	3	<3
Naphthalene	µg/L	0.5	<0.5

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 13/11/2020

			QR1
			WATER
			-
PARAMETER	UOM	LOR	9/11/2020 SE213398.022
TRH C6-C9	µg/L	40	<40
Benzene (F0)	μg/L	0.5	<0.5
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 12/11/2020

			QR1
PARAMETER	UOM	LOR	WATER - 9/11/2020 SE213398.022
TRH C10-C14	μg/L	50	<50
TRH C15-C28	μg/L	200	<200
TRH C29-C36	μg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C40	μg/L	320	<320

SE213398 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 11/11/2020

			QR1
PARAMETER	UOM	LOR	WATER - 9/11/2020 SE213398.022
Arsenic, As	μg/L	1	<1
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Copper, Cu	µg/L	1	<1
Lead, Pb	μg/L	1	<1
Nickel, Ni	µg/L	1	<1
Zinc, Zn	μg/L	5	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 12/11/2020

			QR1
			WATER
			-
			9/11/2020
PARAMETER	UOM	LOR	SE213398.022
Mercury	mg/L	0.0001	<0.0001

METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoverable Hydrocarbons - Silica (TRH-Si) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

 AN602
 The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-</td>

 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres):

 (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and

 (c)
 these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	¢↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.
***	Indicates that both * and ** apply.				

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Alejandra Beltran	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24175.E02 28 Elizabeth St. Liverpool	SGS Reference	SE213398 R0
Order Number	E24175.E02	Date Received	10 Nov 2020
Samples	12	Date Reported	17 Nov 2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

Sample #13: Asbestos found in approx 10x6x3mm cement sheet fragments. Sample #16: Asbestos found in approx 10x5x3mm cement sheet fragment. Sample #17: Asbestos found in approx 25x10x4mm cement sheet fragments.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES

Akheeqar BENIAMEEN Chemist

Kamrul AHSAN Senior Chemist

C .

Yusuf KUTHPUDIN Asbestos Analyst

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia **t** Australia **f**

t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

ANALYTICAL REPORT

Fibre Identifica	ation in soil			Method AN602				
Laboratory Reference	-		Matrix		Fibre Identification	Est.%w/w*		
SE213398.001	BH201M_0.5-0.6	Soil	71g Clay, Sand, Soil, Rocks	09 Nov 2020	No Asbestos Found	<0.01		
SE213398.003	BH202M_0.4-0.5	Soil	213g Sand, Soil, Rocks	09 Nov 2020	No Asbestos Found	<0.01		
SE213398.006	BH203_0.1-0.2	Soil	195g Clay, Sand, Soil, Rocks	09 Nov 2020	No Asbestos Found	<0.01		
SE213398.008	BH204_0.2-0.3	Soil	385g Clay, Soil, Rocks	09 Nov 2020	No Asbestos Found	<0.01		
SE213398.009	BH205M_0.2-0.3	Soil	170g Clay, Rocks	09 Nov 2020	No Asbestos Found	<0.01		
SE213398.011	BH206_0.2-0.3	Soil	157g Clay, Soil, Rocks	09 Nov 2020	No Asbestos Found	<0.01		
SE213398.013	BH207_0.2-0.3	Soil	191g Clay, Sand, Soil, Rocks	09 Nov 2020	Amosite & Chrysotile Asbestos Found Organic Fibres Detected	>0.01		
SE213398.015	BH208_0.2-0.3	Soil	211g Clay, Sand, Soil, Rocks	09 Nov 2020	No Asbestos Found	<0.01		
SE213398.016	BH209_0.2-0.3	Soil	221g Clay, Sand, Soil, Rocks	09 Nov 2020	Chrysotile Asbestos Found	>0.01		
SE213398.017	BH210_0.2-0.3	Soil	208g Clay, Sand, Soil, Rocks	09 Nov 2020	Chrysotile Asbestos Found Organic Fibres Detected	>0.01		
SE213398.018	BH211_0.2-0.3	Soil	156g Clay, Sand, Soil, Rocks	09 Nov 2020	No Asbestos Found Organic Fibres Detected	<0.01		
SE213398.020	BH212_0.2-0.3	Soil	295g Clay, Sand, Soil, Rocks	09 Nov 2020	No Asbestos Found	<0.01		

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable ' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

Amosite Brown Asbestos NA Not Analysed Chrysotile White Asbestos INR Listed. Not Required --Crocidolite Blue Asbestos -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Indicative data, theoretical holding time exceeded. Amphiboles *** Indicates that both * and ** apply. .

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sgs.com.au/en-gb/environment-health-and-safety.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

FOOTNOTES -

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 255405

Client Details	
Client	El Australia
Attention	Alejandra Beltran, Lab Email
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	E24175.E02, 28 Elizabeth St Liverpool
Number of Samples	1 soil
Date samples received	10/11/2020
Date completed instructions received	20/11/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details					
Date results requested by	25/11/2020				
Date of Issue	24/11/2020				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Manju Dewendrage, Chemist Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 255405 Revision No: R00

Page | 1 of 11

vTRH(C6-C10)/BTEXN in Soil		
Our Reference		255405-1
Your Reference	UNITS	QT1
Date Sampled		9/11/2020
Type of sample		soil
Date extracted	-	23/11/2020
Date analysed	-	24/11/2020
TRH C ₆ - C ₉	mg/kg	<25
TRH C ₆ - C ₁₀	mg/kg	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25
Benzene	mg/kg	<0.2
Toluene	mg/kg	<0.5
Ethylbenzene	mg/kg	<1
m+p-xylene	mg/kg	<2
o-Xylene	mg/kg	<1
naphthalene	mg/kg	<1
Total +ve Xylenes	mg/kg	<3
Surrogate aaa-Trifluorotoluene	%	103

svTRH (C10-C40) in Soil		
Our Reference		255405-1
Your Reference	UNITS	QT1
Date Sampled		9/11/2020
Type of sample		soil
Date extracted	-	23/11/2020
Date analysed	-	24/11/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100
Total +ve TRH (>C10-C40)	mg/kg	<50
Surrogate o-Terphenyl	%	89

Acid Extractable metals in soil		
Our Reference		255405-1
Your Reference	UNITS	QT1
Date Sampled		9/11/2020
Type of sample		soil
Date prepared	-	23/11/2020
Date analysed	-	23/11/2020
Arsenic	mg/kg	8
Cadmium	mg/kg	<0.4
Chromium	mg/kg	17
Copper	mg/kg	15
Lead	mg/kg	19
Mercury	mg/kg	<0.1
Nickel	mg/kg	5
Zinc	mg/kg	18

Moisture		
Our Reference		255405-1
Your Reference	UNITS	QT1
Date Sampled		9/11/2020
Type of sample		soil
Date prepared	-	23/11/2020
Date analysed	-	24/11/2020
Moisture	%	23

Method ID	Methodology Summary
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)/	BTEXN in Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			23/11/2020	[NT]		[NT]	[NT]	23/11/2020	
Date analysed	-			24/11/2020	[NT]		[NT]	[NT]	24/11/2020	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	105	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	[NT]		[NT]	[NT]	105	
Benzene	mg/kg	0.2	Org-023	<0.2	[NT]		[NT]	[NT]	105	
Toluene	mg/kg	0.5	Org-023	<0.5	[NT]		[NT]	[NT]	101	
Ethylbenzene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	107	
m+p-xylene	mg/kg	2	Org-023	<2	[NT]		[NT]	[NT]	106	
o-Xylene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	104	
naphthalene	mg/kg	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	102	[NT]		[NT]	[NT]	103	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			23/11/2020	[NT]		[NT]	[NT]	23/11/2020	
Date analysed	-			24/11/2020	[NT]		[NT]	[NT]	24/11/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	125	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	118	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	123	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	[NT]		[NT]	[NT]	125	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	118	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	[NT]		[NT]	[NT]	123	
Surrogate o-Terphenyl	%		Org-020	92	[NT]	[NT]	[NT]	[NT]	123	[NT]

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			23/11/2020	1	23/11/2020	23/11/2020		23/11/2020		
Date analysed	-			23/11/2020	1	23/11/2020	23/11/2020		23/11/2020		
Arsenic	mg/kg	4	Metals-020	<4	1	8	8	0	110		
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	102		
Chromium	mg/kg	1	Metals-020	<1	1	17	17	0	104		
Copper	mg/kg	1	Metals-020	<1	1	15	15	0	109		
Lead	mg/kg	1	Metals-020	<1	1	19	15	24	105		
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	110		
Nickel	mg/kg	1	Metals-020	<1	1	5	5	0	109		
Zinc	mg/kg	1	Metals-020	<1	1	18	13	32	108	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Alejandra Beltran	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 95160722 (Not specified) Alejandra.beltran@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E24175 28 Elizabeth St, Liverpool NSW E24175 7	SGS Reference Date Received Date Reported	SE213672 R0 17/11/2020 19/11/2020

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar BENIAMEEN Chemist

hon

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Dong LIANG

Metals/Inorganics Team Leader

Alexandria NSW 2015 Alexandria NSW 2015 Australia f Australia f

Kamrul AHSAN Senior Chemist

> t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

SE213672 R0

VOCs in Water [AN433] Tested: 17/11/2020

			BH201M-1	BH202M-1	BH205M-1	BH200_GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
			- 17/11/2020	- 17/11/2020	- 17/11/2020	- 17/11/2020	- 17/11/2020
PARAMETER	UOM	LOR	SE213672.001	SE213672.002	SE213672.003	SE213672.004	SE213672.005
Benzene	µg/L	0.5	<0.5	1.0	<0.5	<0.5	<0.5
Toluene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	µg/L	0.5	0.7	<0.5	<0.5	<0.5	<0.5
m/p-xylene	µg/L	1	1	2	<1	<1	<1
o-xylene	µg/L	0.5	0.5	1.1	<0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	1.8	3.3	<1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	4	<3	<3	<3
Naphthalene	µg/L	0.5	0.6	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5	<5	-	-
Chloromethane	µg/L	5	<5	<5	<5	-	-
Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	<0.3	-	-
Bromomethane	µg/L	10	<10	<10	<10	-	-
Chloroethane	µg/L	5	<5	<5	<5	-	-
Trichlorofluoromethane	µg/L	1	<1	<1	<1	-	-
Acetone (2-propanone)	µg/L	10	<10	<10	<10	-	-
Iodomethane	µg/L	5	<5	<5	<5	-	-
1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Acrylonitrile	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	<5	-	-
Allyl chloride	µg/L	2	<2	<2	<2	-	-
Carbon disulfide	µg/L	2	<2	2	<2	-	-
trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	<2	-	-
1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Vinyl acetate	µg/L	10	<10	<10	<10	-	-
MEK (2-butanone)	µg/L	10	<10	<10	<10	-	-
cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromochloromethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Chloroform (THM)	µg/L	0.5	<0.5	17	<0.5	-	-
2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromomethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-nitropropane	µg/L	100	<100	<100	<100	-	-
Bromodichloromethane (THM)	µg/L	0.5	<0.5	2.5	<0.5	-	-
MIBK (4-methyl-2-pentanone)	µg/L	5	36	<5	<5	-	-
cis-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,3-dichloropropene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2-trichloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Dibromochloromethane (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-hexanone (MBK)	µg/L	5	<5	<5	<5	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Chlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromoform (THM)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
cis-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	-	-
Styrene (Vinyl benzene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	<1	-	-

SE213672 R0

VOCs in Water [AN433] Tested: 17/11/2020 (continued)

			BH201M-1	BH202M-1	BH205M-1	BH200_GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
				-			
PARAMETER	UOM	LOR	SE213672.001	SE213672.002	SE213672.003	SE213672.004	SE213672.005
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Bromobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-propylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	<0.3	-	-
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
n-butylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5	-	-
Total VOC	µg/L	10	39	27	<10	-	-

SE213672 R0

VOCs in Water [AN433] Tested: 17/11/2020 (continued)

			GWQTS1	GWQTB1
			WATER	WATER
PARAMETER	UOM	LOR	SE213672.006	SE213672.007
Benzene	µg/L	0.5	[102%]	<0.5
Toluene	µg/L	0.5	[102%]	<0.5
Ethylbenzene	µg/L	0.5	[102%]	<0.5
m/p-xylene	µg/L	1	[101%]	<1
o-xylene	µg/L	0.5	[100%]	<0.5
Total Xylenes	µg/L	1.5	-	<1.5
Total BTEX	µg/L	3	-	<3
Naphthalene	µg/L	0.5	-	<0.5
Dichlorodifluoromethane (CFC-12)	µg/L	5	-	-
Chloromethane	µg/L	5	-	-
Vinyl chloride (Chloroethene)	µg/L	0.3	-	-
Bromomethane	µg/L	10	-	-
Chloroethane	µg/L	5	-	-
Trichlorofluoromethane	µg/L	1	-	-
Acetone (2-propanone)	µg/L	10	-	-
Iodomethane	µg/L	5	-	-
1,1-dichloroethene	µg/L	0.5	-	-
Acrylonitrile	µg/L	0.5	-	-
Dichloromethane (Methylene chloride)	µg/L	5	-	-
Allyl chloride	µg/L	2	-	-
Carbon disulfide	µg/L	2	-	-
trans-1,2-dichloroethene	µg/L	0.5	-	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	-	-
1,1-dichloroethane	µg/L	0.5	-	-
Vinyl acetate	µg/L	10	-	-
MEK (2-butanone)	µg/L	10	-	-
cis-1,2-dichloroethene	µg/L	0.5	-	-
Bromochloromethane	µg/L	0.5	-	-
Chloroform (THM)	µg/L	0.5	-	-
2,2-dichloropropane	µg/L	0.5	-	-
1,2-dichloroethane	µg/L	0.5	-	-
1,1,1-trichloroethane	µg/L	0.5	-	-
1,1-dichloropropene	µg/L	0.5	-	-
Carbon tetrachloride	µg/L	0.5	-	-
Dibromomethane	µg/L	0.5	-	-
1,2-dichloropropane	µg/L	0.5	-	-
Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	-	-
2-nitropropane	µg/L	100	-	-
Bromodichloromethane (THM)	µg/L	0.5	-	-
MIBK (4-methyl-2-pentanone)	µg/L	5	-	-
cis-1,3-dichloropropene	µg/L	0.5	-	-
trans-1,3-dichloropropene	µg/L	0.5	-	-
1,1,2-trichloroethane	µg/L	0.5	-	-
1,3-dichloropropane	µg/L	0.5	-	-
Dibromochloromethane (THM)	µg/L	0.5	-	-
2-hexanone (MBK)	µg/L	5	-	-
1,2-dibromoethane (EDB)	µg/L	0.5	-	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	-	-
1,1,1,2-tetrachloroethane	µg/L	0.5	-	-
	µg/L	0.5	-	-
Chlorobenzene		e -		-
Bromoform (THM)	µg/L	0.5	-	
Bromoform (THM) cis-1,4-dichloro-2-butene	µg/L	1	-	-
Bromoform (THM) cis-1,4-dichloro-2-butene Styrene (Vinyl benzene)	μg/L μg/L	1 0.5	-	-
Bromoform (THM) cis-1,4-dichloro-2-butene Styrene (Vinyl benzene) 1,1,2,2-tetrachloroethane	µg/L µg/L µg/L	1 0.5 0.5	-	-
Bromoform (THM) cis-1,4-dichloro-2-butene Styrene (Vinyl benzene)	μg/L μg/L	1 0.5	-	-

VOCs in Water [AN433] Tested: 17/11/2020 (continued)

			GWQTS1	GWQTB1
			WATER	WATER
			17/11/2020	17/11/2020
PARAMETER	UOM	LOR	SE213672.006	SE213672.007
Isopropylbenzene (Cumene)	µg/L	0.5	-	-
Bromobenzene	μg/L	0.5	-	-
n-propylbenzene	µg/L	0.5	-	-
2-chlorotoluene	µg/L	0.5	-	-
4-chlorotoluene	µg/L	0.5	-	-
1,3,5-trimethylbenzene	µg/L	0.5	-	-
tert-butylbenzene	µg/L	0.5	-	-
1,2,4-trimethylbenzene	µg/L	0.5	-	-
sec-butylbenzene	µg/L	0.5	-	-
1,3-dichlorobenzene	µg/L	0.5	-	-
1,4-dichlorobenzene	µg/L	0.3	-	-
p-isopropyltoluene	µg/L	0.5	-	-
1,2-dichlorobenzene	µg/L	0.5	-	-
n-butylbenzene	µg/L	0.5	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	-	-
1,2,4-trichlorobenzene	µg/L	0.5	-	-
Hexachlorobutadiene	µg/L	0.5	-	-
1,2,3-trichlorobenzene	µg/L	0.5	-	-
Total VOC	µg/L	10	-	-

SE213672 R0

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 17/11/2020

			BH201M-1	BH202M-1	BH205M-1	BH200_GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
				-	-	-	-
PARAMETER	UOM	LOR	SE213672.001	SE213672.002	SE213672.003	SE213672.004	SE213672.005
TRH C6-C9	µg/L	40	<40	<40	<40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	1.0	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50	<50	<50

SE213672 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 18/11/2020

			BH201M-1	BH202M-1	BH205M-1	BH200_GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
			17/11/2020	17/11/2020	17/11/2020	17/11/2020	17/11/2020
PARAMETER	UOM	LOR	SE213672.001	SE213672.002	SE213672.003	SE213672.004	SE213672.005
TRH C10-C14	µg/L	50	<50	<50	<50	<50	<50
TRH C15-C28	µg/L	200	<200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16	µg/L	60	<60	<60	<60	<60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60	<60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500	<500
TRH C10-C40	µg/L	320	<320	<320	<320	<320	<320

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 18/11/2020

			BH201M-1	BH202M-1	BH205M-1
			WATER	WATER	WATER
			- 17/11/2020	- 17/11/2020	- 17/11/2020
PARAMETER	UOM	LOR	SE213672.001	SE213672.002	SE213672.003
Naphthalene	µg/L	0.1	0.2	<0.1	<0.1
2-methylnaphthalene	μg/L	0.1	0.3	<0.1	<0.1
1-methylnaphthalene	μg/L	0.1	0.2	0.2	<0.1
Acenaphthylene	µg/L	0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	0.9	<0.1
Fluorene	µg/L	0.1	<0.1	0.3	<0.1
Phenanthrene	µg/L	0.1	0.1	0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	µg/L	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1	<0.1
Total PAH (18)	μg/L	1	<1	2	<1

Total Phenolics in Water [AN289] Tested: 18/11/2020

			BH201M-1	BH202M-1	BH205M-1
			WATER	WATER	WATER
PARAMETER	UOM	LOR	SE213672.001	SE213672.002	SE213672.003
Total Phenols	mg/L	0.01	0.01	<0.01	<0.01

SE213672 R0

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 17/11/2020

			BH201M-1	BH202M-1	BH205M-1	BH200_GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
PARAMETER	UOM	LOR	- 17/11/2020 SE213672.001	- 17/11/2020 SE213672.002	- 17/11/2020 SE213672.003	- 17/11/2020 SE213672.004	- 17/11/2020 SE213672.005
Arsenic, As	µg/L	1	1	1	3	3	<1
Cadmium, Cd	µg/L	0.1	<0.1	<0.1	0.1	0.1	<0.1
Chromium, Cr	µg/L	1	<1	120	<1	<1	<1
Copper, Cu	µg/L	1	4	1	<1	<1	<1
Lead, Pb	µg/L	1	<1	<1	<1	<1	<1
Nickel, Ni	µg/L	1	7	5	13	13	<1
Zinc, Zn	µg/L	5	17	51	63	54	<5
Aluminium, Al	µg/L	5	18	17	10	-	-

SE213672 R0

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 18/11/2020

			BH201M-1	BH202M-1	BH205M-1	BH200_GWQD1	GWQR1
			WATER	WATER	WATER	WATER	WATER
							-
							17/11/2020
PARAMETER	UOM	LOR	SE213672.001	SE213672.002	SE213672.003	SE213672.004	SE213672.005
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC`s are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply. NVL IS I NR

Not analysed. Not validated. Insufficient sample for analysis. Sample listed, but not received. UOM Unit of Measure. Limit of Reporting. LOR Raised/lowered Limit of î↓ Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi b.
- 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: www.sqs.com.au/en-gb/environment-health-and-safety

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

CERTIFICATE OF ANALYSIS 256059

Client Details	
Client	El Australia
Attention	Alejandra Beltran
Address	Suite 6.01, 55 Miller Street, Pyrmont, NSW, 2009

Sample Details	
Your Reference	<u>E24175</u>
Number of Samples	1 Water
Date samples received	18/11/2020
Date completed instructions received	18/11/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	20/11/2020
Date of Issue	20/11/2020
NATA Accreditation Number 290	01. This document shall not be reproduced except in full.
Accredited for compliance with I	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		256059-1
Your Reference	UNITS	BH200_GWQT1
Date Sampled		17/11/2020
Type of sample		Water
Date extracted	-	19/11/2020
Date analysed	-	19/11/2020
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	120
Surrogate toluene-d8	%	107
Surrogate 4-BFB	%	97

svTRH (C10-C40) in Water		
Our Reference		256059-1
Your Reference	UNITS	BH200_GWQT1
Date Sampled		17/11/2020
Type of sample		Water
Date extracted	-	19/11/2020
Date analysed	-	19/11/2020
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	µg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50
TRH >C10 - C16 less Naphthalene (F2)	μg/L	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	83

HM in water - dissolved		
Our Reference		256059-1
Your Reference	UNITS	BH200_GWQT1
Date Sampled		17/11/2020
Type of sample		Water
Date prepared	-	19/11/2020
Date analysed	-	19/11/2020
Arsenic-Dissolved	μg/L	4
Cadmium-Dissolved	µg/L	0.1
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	µg/L	<1
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	μg/L	15
Zinc-Dissolved	µg/L	80

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			19/11/2020	1	19/11/2020	19/11/2020		19/11/2020	
Date analysed	-			19/11/2020	1	19/11/2020	19/11/2020		19/11/2020	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	<10	<10	0	101	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	<10	<10	0	101	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	98	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	100	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	99	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	104	
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	104	
Naphthalene	μg/L	1	Org-023	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	114	1	120	117	3	101	
Surrogate toluene-d8	%		Org-023	104	1	107	92	15	100	
Surrogate 4-BFB	%		Org-023	99	1	97	99	2	101	

QUALITY CONTROL: svTRH (C10-C40) in Water						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			19/11/2020	[NT]		[NT]	[NT]	19/11/2020	
Date analysed	-			19/11/2020	[NT]		[NT]	[NT]	19/11/2020	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	93	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	82	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	103	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	93	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	82	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	103	
Surrogate o-Terphenyl	%		Org-020	78	[NT]		[NT]	[NT]	121	

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			19/11/2020	[NT]		[NT]	[NT]	19/11/2020	
Date analysed	-			19/11/2020	[NT]		[NT]	[NT]	19/11/2020	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	101	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	94	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	98	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	104	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	107	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	92	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	

Result Definiti	Result Definitions			
NT	Not tested			
NA	Test not required			
INS	Insufficient sample for this test			
PQL	Practical Quantitation Limit			
<	Less than			
>	Greater than			
RPD	Relative Percent Difference			
LCS	Laboratory Control Sample			
NS	Not specified			
NEPM	National Environmental Protection Measure			
NR	Not Reported			

Quality Contro	Quality Control Definitions			
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.			
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.			
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.			
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.			
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.			

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab. Note: there is a possibility some elements may be underestimated.

Appendix H – QA/QC Assessment

H1 Quality Assurance / Quality Control Program

Quality assurance comprises an assessment of the reliability of the field procedures and laboratory results against standard industry practices and the SAQP. A summary of the project QA/QC measures incorporated into this DSI is presented in **Table H-1**.

Table H-1 Proj	ect QA measures	
Task	Description	Comments / Compliance with SOP or DQI
Field QA/QC		
General	Work was to be undertaken following standard field procedures which are based on industry accepted standard practice.	Yes.
	All fieldwork was supervised by a suitably qualified and experienced scientist or engineer.	Yes.
Soil Screening with PID	The PID was serviced and calibrated as per manufacturer requirements. PID calibrated at the beginning of each day of fieldwork.	Yes. See Appendix E for calibration documentation.
Equipment Decontamination	Sampling equipment to be decontaminated after the collection of each soil sample by washing with phosphate-free detergent and potable water, followed by a final distilled water rinse. One rinsate blank would be collected and analysed for the primary contaminants, with all results to be non-detect.	Yes.
Transport	Samples were stored in a chilled (with ice) cooler box and transported to the laboratories. To ensure the integrity of the samples from collection to receipt by the analytical laboratory, samples were sent by courier to the laboratories under 'chain of custody' describing sample preservation and transport duration.	Yes.
Trip Blanks	Trip blanks were to be prepared and analysed by the primary laboratory for BTEX. Analytical results for this sample to be below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.	Yes. One trip blank sample (QTB1) was prepared by the primary laboratory (SGS) and analysed for BTEX during soil testing. Results were below the laboratory LOR, indicating that satisfactory sample transport and handling conditions were achieved (i.e. no cross-contamination occurred).

Table H-1 Project QA Measures

Task	Description	Comments / Compliance with SOP or DQI
Trip Spikes	Trip spike samples were to be prepared and analysed by the primary laboratory for BTEX. Recoveries to be 70-130%, indicating that satisfactory sample transport and handling conditions were achieved.	Soil trip spike sample was damaged during transport. However, El considers that satisfactory sample transport and handling conditions were achieved due to soil trip blank sample results where analytes were below the laboratory LOR. (see above) One trip spike water sample (GWQTS1) was prepared and analysed by the primary laboratory (SGS) for BTEX. Recoveries were 72-119%, which complied with the DQI. It was therefore concluded that satisfactory sample transport and handling conditions were achieve (i.e. negligible loss of volatiles).
Duplicates	 Field duplicate samples were collected and analysed as follows: intra-laboratory (blind) duplicate samples at a rate of 1 in 20 primary samples (as per NEPM); and inter-laboratory (split) duplicate samples at a rate of 1 in 20 primary samples (as per NEPM). DQI was 30% RPD, as stated by AS4482.1-2005. RPDs that exceed this threshold were considered acceptable where: Results were less than 10 times the limits of reporting (LOR); Results were less than 20 times the LOR and the RPD is less than 50%; and/or Heterogeneous materials or volatile compounds are encountered. 	 Yes. Field QC duplicates are identified in Table H-2 and calculated RPDs are included in the corresponding table in Appendix B. The required duplicate frequency of 1 per 20 primary samples was achieved. Generally, RPDs were <30%, in compliance wit the DQI, with the exception of: Arsenic (66.67%), mercury (96.55%) between sample BH201M_0.5-0.5 and QD1; and Nickel (58.06%) and zinc (71.49%) between samples BH201M_0.5-0.5 and QT1. Variabilities were due to low analyte concentrations (i.e. within 10 x LOR) and/or sample heterogeneity.
Laboratory QA/Q	<u>c</u>	
Laboratory Analysis	The laboratories selected are NATA accredited for the analytes selected and perform their own internal QA/QC programs.	Yes. SGS - primary laboratory. Envirolab - secondary laboratory. Laboratory QA/QC measures were included in the analytical reports (Appendix G). Refer also to Appendix I .
	Appropriate detection limits were used for the analyses to be undertaken.	Yes. Practical Quantitation Limits for all tested parameters during the DSI are presented with the laboratory reports in Appendix G .
Holding Times	Holding times are the maximum permissible elapsed time in days from the collection of the sample to its extraction and/or analysis. All extraction and analyses should be	Yes.

Task	Description	Comments / Compliance with SOP or DQI
Method Blanks	The method blank sample is laboratory prepared, containing the reagents used to prepare the sample for final analysis. The purpose of this procedure is to identify contamination in the reagent materials and assess potential bias in the sample analysis due to contaminated reagents. The QC criterion aims to find no detectable contamination in the reagents. Each analysis procedure should be subject to a method blank analysis. The results of each should indicate that contaminants were not detected.	Yes. All method blanks complied with the laboratory's DQI.
Laboratory Duplicates	Laboratory duplicates are field samples that are split in the laboratory and subsequently analysed a number of times in the same batch. These sub-samples are selected at random by the laboratory to assess the accuracy and precision of the analytical method. The selected laboratories should undertake QA/QC procedures such as calibration standards, laboratory control samples, surrogates, reference materials, sample duplicates and matrix spikes. Intra- laboratory duplicates should be performed at a frequency of 1 per 10 samples.	Yes. All laboratory duplicates were within the laboratory acceptance criteria as shown in the Laboratory DQO documents (Refer to Appendices G and I).
Laboratory Control Standard	A laboratory control standard is a standard reference material used in preparing primary standards. The concentration should be equivalent to a mid-range standard to confirm the primary calibration. Laboratory control samples should be performed on a frequency of 1 per 20 samples or at least one per analytical run.	Yes. All laboratory control samples were within acceptable ranges.
Matrix Spikes / Matrix Spike Duplicates	Matric spikes are field samples to which a predetermined stock solution of known concentration has been added. The samples are then analysed for recovery of the known addition. Recoveries should be within the stated laboratory control limits of 70 to 130% and duplicates should have RPDs of less than 50%.	Yes. All spikes were within acceptable ranges.

Task	Description	Comments / Compliance with SOP or DQI
Surrogate Spikes	Surrogate spikes provide a means of checking, for every analysis that no gross errors have occurred at any stage of the procedure leading to significant analyte loss. Recoveries should be within the stated laboratory control limits of 70 to 130%.	Partially All surrogate spikes were within acceptable ranges, with the exception of PAHs in 26 samples.
Conclusion	The QA/QC indicators should either all comply with the required standards or showed no variations that would have no significant effect on the quality of the data.	Further assessment of the investigation QA/QC is presented in the following sections.

Calculation of Relative Percent Difference (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

Co = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

H2 Field QA/QC

H2.1 Field QC Duplicates

The field duplicates collected during the investigation are identified in **Table H-2**. Analytical results for these QC samples are tabulated in **Appendix B**.

Table	H-2	Field	Duplicates
-------	-----	-------	-------------------

Matrix	Primary Sample	Blind Duplicate (Primary Lab)	Split Duplicate (Secondary Lab)	Total Duplicates
Soil	BH201M_0.5-0.6	QD1	QT1	2
Groundwater	BH205M-1	BH200_GWQD1	BH200_GWQT1	2

I2.2 Field Data Quality Indicators

A discussion of the field data quality indicators is presented in Table H-3 below.

Table H-3 Field Data Quality Indicators

QA Component	Data Quality Indicator(s)	Conformance
Accuracy – A quantitative measure of the closeness of	Standard operation procedures appropriate and complied with	Yes
reported data to the "true" value	Calibration of instruments (PID) against known standards	Yes
	Results for inter-laboratory (split field) duplicates acceptable	Yes
Precision – A quantitative measure of the variability (or	Standard operation procedures appropriate and complied with	Yes
reproducibility) of data	Results for intra-laboratory (blind field) duplicates acceptable	Yes
Completeness – A measure	Each critical location sampled	Yes
of the amount of useable data from a data collection activity	Samples collected at targeted locations and depth	Yes
	SAQP appropriate and complied with	Yes
	Experienced sampler	Yes
	Field documentation correct	Yes
Comparability – The confidence (expressed	Same sampling method used on each occasion/location	Yes
qualitatively) that data may be considered to be	Experienced sampler	Yes
equivalent for each sampling and analytical event	Same type of samples collected (filtered, size, fractions)	Yes
Representativeness – The confidence (expressed	Appropriate media sampled according to SAQP	Yes
qualitatively) that data are representative of each	Each media identified in SAQP sampled	Yes
medium present onsite	Appropriate sample collection methodologies, handling, storage and preservation techniques used	Yes
	Consistency between field observations and laboratory results.	Yes

I2.3 Conclusion for the Field QA/QC

All field work, including equipment decontamination and sample preservation and transport, was conducted in accordance with the SAQP and SOPs, which were devised with reference to industry-approved guidelines. Appropriate QC measures were integrated into each sampling event and the DQI were met, or if not, the variability was suitably justified.

All samples, including field QC samples, were transported to the primary and secondary laboratories under refrigerated conditions, using strict COC procedures. Relevant documents (COC forms) were presented with the samples at the times of delivery. All supporting documents (COCs and SRAs) were completed in full and signed, where appropriate. Copies of these were included in **Appendix G**. El considered the field QA/QC program carried out during the DSI to be appropriate.

H3 Laboratory QA/QC

H3.1 Laboratory Accreditation and DQIs

Primary and intra-laboratory duplicate samples were analysed by SGS (located in Alexandria NSW), with inter-laboratory duplicate samples analysed by Envirolab (located in Chatswood NSW). Both laboratories are accredited by NATA for the analyses undertaken.

Assessment of the laboratory DQIs is presented in **Table H-4** below.

Table H-4 Laboratory Data Quality Indicators

QA/QC Measure	Data Quality Indicator(s)	Conformance
Accuracy – A quantitative measure of the closeness of	Analysis of method blanks	Yes
reported data to the "true" value	Analysis of matrix spikes	Yes
	Analysis of matrix spike duplicates	Yes
	Analysis of surrogate spikes	Yes
	Analysis of laboratory control samples	Yes
Precision – A quantitative measure of the variability (or reproducibility) of data	Analysis of laboratory duplicates	Yes
Completeness – A measure of the amount of useable data	All critical samples analysed according to SAQP and proposal	Yes
from a data collection activity	All analytes analysed according to SAQP in proposal	Yes
	Appropriate methods and PQLs	Yes
	Sample documentation complete	Yes
	Sample holding times complied with	Yes
Comparability – The confidence	Same sample analytical methods used (including clean-up)	Yes
(expressed qualitatively) that data may be considered to be equivalent for each sampling	Same Sample PQLs	Yes
and analytical event	Same laboratories (NATA-accredited)	Yes
	Same units	Yes
Representativeness – The confidence (expressed	All key samples analysed according to SAQP in the proposal.	Yes
qualitatively) that data are representative of each medium present onsite	Analysis of laboratory-prepared volatile trip spikes and trip blanks	Yes

H3.2 Conclusions for the Laboratory QA/QC

All contracted laboratories (SGS and Envirolab) were accredited by NATA for the analyses undertaken. All analytical procedures used were industry recognised and endorsed standard methods. Appropriate QC measures were integrated into each testing batch and the DQI were met, or if not, the variability was suitably justified.

All final reports were submitted in full and included all requested analyses, as per the signed COC forms. El considered the laboratory QA/QC programs carried out during the DSI to be appropriate.

H4 Summary of Project QA/QC

The project DQOs specified in **Section 5.2**, **Table 5-1** of this report were considered to have been achieved. The adopted QA/QC program ensured that the data collated during the DSI were accurate, precise and representative of the site conditions. It was therefore considered that the data were sufficiently precise and accurate and that the results could be used for DSI interpretative purposes.

Appendix I – Laboratory QA/QC and DQOs

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Alejandra Beltran	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24175.E02 28 Elizabeth St. Liverpool	SGS Reference	SE213398 R0
Order Number	E24175.E02	Date Received	10 Nov 2020
Samples	23	Date Reported	17 Nov 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Surrogate	VOC's in Soil	13 items
	Volatile Petroleum Hydrocarbons in Soil	13 items
Matrix Spike	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	4 items

Samples clearly labelled	Yes	Complete documentation received	Yes	
Sample container provider	SGS	Sample cooling method	Ice Bricks	
Samples received in correct containers	Yes	Sample counts by matrix	22 Soil, 1 Water	
Date documentation received	10/11/2020	Type of documentation received	COC	
Samples received in good order	Yes	Samples received without headspace	Yes	
Sample temperature upon receipt	8.3°C	Sufficient sample for analysis	Yes	
Turnaround time requested	Standard			

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke I

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015

V 2015 Australia V 2015 Australia t +61 2 8594 0400 f +61 2 8594 0499

Member of the SGS Group

www.sgs.com.au

Method: ME_(ALI)_JEN/JAN602

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil

FIDIe Identification in soli							Meulou. I	VIE-(AU)-[EIVV]AIV002
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M_0.5-0.6	SE213398.001	LB213376	09 Nov 2020	10 Nov 2020	09 Nov 2021	13 Nov 2020	09 Nov 2021	17 Nov 2020
BH202M_0.4-0.5	SE213398.003	LB213376	09 Nov 2020	10 Nov 2020	09 Nov 2021	13 Nov 2020	09 Nov 2021	17 Nov 2020
BH203_0.1-0.2	SE213398.006	LB213376	09 Nov 2020	10 Nov 2020	09 Nov 2021	13 Nov 2020	09 Nov 2021	17 Nov 2020
BH204_0.2-0.3	SE213398.008	LB213376	09 Nov 2020	10 Nov 2020	09 Nov 2021	13 Nov 2020	09 Nov 2021	17 Nov 2020
BH205M_0.2-0.3	SE213398.009	LB213376	09 Nov 2020	10 Nov 2020	09 Nov 2021	13 Nov 2020	09 Nov 2021	17 Nov 2020
BH206_0.2-0.3	SE213398.011	LB213376	09 Nov 2020	10 Nov 2020	09 Nov 2021	13 Nov 2020	09 Nov 2021	17 Nov 2020
BH207_0.2-0.3	SE213398.013	LB213376	09 Nov 2020	10 Nov 2020	09 Nov 2021	13 Nov 2020	09 Nov 2021	17 Nov 2020
BH208_0.2-0.3	SE213398.015	LB213376	09 Nov 2020	10 Nov 2020	09 Nov 2021	13 Nov 2020	09 Nov 2021	17 Nov 2020
BH209_0.2-0.3	SE213398.016	LB213376	09 Nov 2020	10 Nov 2020	09 Nov 2021	13 Nov 2020	09 Nov 2021	17 Nov 2020
BH210_0.2-0.3	SE213398.017	LB213376	09 Nov 2020	10 Nov 2020	09 Nov 2021	13 Nov 2020	09 Nov 2021	17 Nov 2020
BH211_0.2-0.3	SE213398.018	LB213376	09 Nov 2020	10 Nov 2020	09 Nov 2021	13 Nov 2020	09 Nov 2021	17 Nov 2020
BH212_0.2-0.3	SE213398.020	LB213376	09 Nov 2020	10 Nov 2020	09 Nov 2021	13 Nov 2020	09 Nov 2021	17 Nov 2020
Mercury (dissolved) in Water							Method: ME-(AU)-[ENV	AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analvsis Due	Analysed

QR1 SE213398.022 LB213235 12 Nov 2020 07 Dec 2020 09 Nov 2020 10 Nov 2020 07 Dec 2020 16 Nov 2020

Mercury in Soil	Me	ercury	/ in	Soil
-----------------	----	--------	------	------

Mercury in Soil							Method: N	ME-(AU)-[ENV]AN31
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M_0.5-0.6	SE213398.001	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH201M_1.2-1.3	SE213398.002	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH202M_0.4-0.5	SE213398.003	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH202M_3.9-4.0	SE213398.005	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH203_0.1-0.2	SE213398.006	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH203_0.6-0.7	SE213398.007	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH204_0.2-0.3	SE213398.008	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH205M_0.2-0.3	SE213398.009	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH205M_1.3-1.4	SE213398.010	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH206_0.2-0.3	SE213398.011	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH206_0.6-0.7	SE213398.012	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH207_0.2-0.3	SE213398.013	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH207_0.9-1.0	SE213398.014	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH208_0.2-0.3	SE213398.015	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH209_0.2-0.3	SE213398.016	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH210_0.2-0.3	SE213398.017	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH211_0.2-0.3	SE213398.018	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH211_0.8-0.9	SE213398.019	LB213205	09 Nov 2020	10 Nov 2020	07 Dec 2020	11 Nov 2020	07 Dec 2020	13 Nov 2020
BH212_0.2-0.3	SE213398.020	LB213249	09 Nov 2020	10 Nov 2020	07 Dec 2020	12 Nov 2020	07 Dec 2020	13 Nov 2020
QD1	SE213398.021	LB213249	09 Nov 2020	10 Nov 2020	07 Dec 2020	12 Nov 2020	07 Dec 2020	13 Nov 2020
Moisture Content							Method: N	ME-(AU)-[ENV]AN00
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M_0.5-0.6	SE213398.001	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH201M_1.2-1.3	SE213398.002	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH202M_0.4-0.5	SE213398.003	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH202M_2.4-2.5	SE213398.004	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH202M_3.9-4.0	SE213398.005	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH203_0.1-0.2	SE213398.006	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH203_0.6-0.7	SE213398.007	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH204_0.2-0.3	SE213398.008	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH205M_0.2-0.3	SE213398.009	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH205M_1.3-1.4	SE213398.010	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH206_0.2-0.3	SE213398.011	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
		LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH206_0.6-0.7	SE213398.012	LDZ 13 195						13 Nov 2020
BH206_0.6-0.7 BH207_0.2-0.3	SE213398.012 SE213398.013	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 100 2020
				10 Nov 2020 10 Nov 2020	23 Nov 2020 23 Nov 2020	11 Nov 2020 11 Nov 2020	16 Nov 2020 16 Nov 2020	13 Nov 2020
BH207_0.2-0.3	SE213398.013	LB213195	09 Nov 2020					
BH207_0.2-0.3 BH207_0.9-1.0	SE213398.013 SE213398.014	LB213195 LB213195	09 Nov 2020 09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH207_0.2-0.3 BH207_0.9-1.0 BH208_0.2-0.3	SE213398.013 SE213398.014 SE213398.015	LB213195 LB213195 LB213195	09 Nov 2020 09 Nov 2020 09 Nov 2020	10 Nov 2020 10 Nov 2020	23 Nov 2020 23 Nov 2020	11 Nov 2020 11 Nov 2020	16 Nov 2020 16 Nov 2020	13 Nov 2020 13 Nov 2020

Method: ME-(AU)-[ENV]AN002

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued)

•	· · · · · · · · · · · · · · · · · · ·							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH211_0.8-0.9	SE213398.019	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
BH212_0.2-0.3	SE213398.020	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
QD1	SE213398.021	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
QTB1	SE213398.023	LB213195	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	16 Nov 2020	13 Nov 2020
OC Pesticides in Soil							Method:	ME-(AU)-[ENV]AN42

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M_0.5-0.6	SE213398.001	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH201M_1.2-1.3	SE213398.002	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH202M_0.4-0.5	SE213398.003	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH202M_2.4-2.5	SE213398.004	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH202M_3.9-4.0	SE213398.005	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH203_0.1-0.2	SE213398.006	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH203_0.6-0.7	SE213398.007	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH204_0.2-0.3	SE213398.008	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH205M_0.2-0.3	SE213398.009	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH205M_1.3-1.4	SE213398.010	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH206_0.2-0.3	SE213398.011	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH206_0.6-0.7	SE213398.012	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH207_0.2-0.3	SE213398.013	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH207_0.9-1.0	SE213398.014	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH208_0.2-0.3	SE213398.015	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH209_0.2-0.3	SE213398.016	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH210_0.2-0.3	SE213398.017	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH211_0.2-0.3	SE213398.018	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH211_0.8-0.9	SE213398.019	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH212_0.2-0.3	SE213398.020	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
QD1	SE213398.021	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
OP Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M_0.5-0.6	SE213398.001	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH201M_1.2-1.3	SE213398.002	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH202M_0.4-0.5	SE213398.003	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH202M_2.4-2.5	SE213398.004	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH202M_3.9-4.0	SE213398.005	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH203_0.1-0.2	SE213398.006	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH203_0.6-0.7	SE213398.007	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH204_0.2-0.3	SE213398.007	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH205M_0.2-0.3	SE213398.009	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH205M_1.3-1.4	SE213398.010	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH206_0.2-0.3	SE213398.011	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH206_0.6-0.7	SE213398.012	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH207_0.2-0.3	SE213398.013	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH207_0.9-1.0	SE213398.014	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH208_0.2-0.3	SE213398.015	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH209_0.2-0.3	SE213398.016	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH210_0.2-0.3	SE213398.017	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH211_0.2-0.3	SE213398.018	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH211_0.8-0.9	SE213398.019	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH212_0.2-0.3	SE213398.020	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
QD1	SE213398.021	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
PAH (Polynuclear Aromat	ic Hydrocarbons) in Soil						Method: I	ME-(AU)-[ENV]AN42
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M_0.5-0.6	SE213398.001	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH201M_1.2-1.3	SE213398.002	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH202M_0.4-0.5	SE213398.003	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH202M_0.4-0.5 BH202M_2.4-2.5	SE213398.003	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	17 Nov 2020
BH202M_3.9-4.0	SE213398.005	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020

10 Nov 2020

23 Nov 2020

11 Nov 2020

21 Dec 2020

BH203_0.1-0.2

LB213192

SE213398.006

09 Nov 2020

13 Nov 2020

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-IENVIAN420 Sample No. QC Ref Analysed Sample Name Received Extraction Due Extracted Analysis Due Sampled BH203 0.6-0.7 SE213398.007 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 13 Nov 2020 BH204_0.2-0.3 SE213398.008 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 13 Nov 2020 BH205M 0.2-0.3 SE213398.009 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 13 Nov 2020 SE213398.010 BH205M_1.3-1.4 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 13 Nov 2020 09 Nov 2020 11 Nov 2020 BH206_0.2-0.3 SE213398.011 LB213192 10 Nov 2020 23 Nov 2020 21 Dec 2020 13 Nov 2020 BH206 0.6-0.7 SE213398 012 I B213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 13 Nov 2020 BH207 0.2-0.3 SE213398.013 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 13 Nov 2020 BH207 0.9-1.0 SE213398.014 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 13 Nov 2020 21 Dec 2020 SE213398.015 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 BH208_0.2-0.3 13 Nov 2020 BH209 0.2-0.3 SE213398.016 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 21 Dec 2020 13 Nov 2020 11 Nov 2020 BH210 0.2-0.3 SE213398.017 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 13 Nov 2020 BH211_0.2-0.3 SE213398.018 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 13 Nov 2020 BH211_0.8-0.9 SE213398.019 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 21 Dec 2020 11 Nov 2020 13 Nov 2020 BH212 0.2-0.3 SE213398 020 I B213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 13 Nov 2020 17 Nov 2020 QD1 SE213398.021 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 PCBs in Soil Method: ME-(AU)-/ENVIAN420 Sample Name Analysis Due Sampled Sample No. QC Ref Received Extraction Due Extracted Analysed BH201M_0.5-0.6 SE213398.001 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH201M_1.2-1.3 SE213398.002 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 16 Nov 2020 BH202M 0.4-0.5 SE213398.003 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 BH202M 2.4-2.5 SE213398.004 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH202M 3.9-4.0 SE213398.005 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH203_0.1-0.2 SE213398.006 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH203_0.6-0.7 SE213398.007 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH204 0.2-0.3 SE213398.008 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH205M 0.2-0.3 SE213398.009 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH205M 1.3-1.4 SE213398.010 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 SE213398.011 BH206_0.2-0.3 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH206 0.6-0.7 SE213398.012 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 21 Dec 2020 16 Nov 2020 11 Nov 2020 BH207 0.2-0.3 SE213398.013 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH207_0.9-1.0 SE213398.014 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH208_0.2-0.3 SE213398.015 LB213192 21 Dec 2020 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 16 Nov 2020 BH209 0.2-0.3 SE213398.016 LB213192 10 Nov 2020 21 Dec 2020 09 Nov 2020 23 Nov 2020 11 Nov 2020 16 Nov 2020 BH210_0.2-0.3 SE213398.017 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH211 0.2-0.3 SE213398.018 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH211_0.8-0.9 SE213398.019 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 BH212 0.2-0.3 SE213398.020 LB213192 09 Nov 2020 10 Nov 2020 16 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 QD1 SE213398.021 LB213192 09 Nov 2020 10 Nov 2020 23 Nov 2020 11 Nov 2020 21 Dec 2020 16 Nov 2020 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-IENVIAN040/AN320 Sample Name Sample No. QC Ref Sampled Received Extraction Due Analysis Due Analysed BH201M 0 5-0 6 SE213398 001 LB213201 09 Nov 2020 10 Nov 2020 08 May 2021 11 Nov 2020 08 May 2021 13 Nov 2020 BH201M 1.2-1.3 SE213398.002 LB213201 09 Nov 2020 10 Nov 2020 08 May 2021 11 Nov 2020 08 May 2021 13 Nov 2020 BH202M_0.4-0.5 SE213398.003 LB213201 09 Nov 2020 10 Nov 2020 08 May 2021 11 Nov 2020 08 May 2021 13 Nov 2020 BH202M_2.4-2.5 SE213398.004 09 Nov 2020 10 Nov 2020 11 Nov 2020 13 Nov 2020 LB213201 08 May 2021 08 May 2021 BH202M 3.9-4.0 SE213398.005 10 Nov 2020 13 Nov 2020 LB213201 09 Nov 2020 08 May 2021 11 Nov 2020 08 May 2021 BH203 0.1-0.2 SE213398.006 LB213201 09 Nov 2020 10 Nov 2020 08 May 2021 11 Nov 2020 08 May 2021 13 Nov 2020

Method: ME-(AU)-[ENVIAN403

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Elemen	ts in Soil/Waste Solids/Ma	terials by ICPOES (continued)				Method: ME-(AU)-[ENV]AN040/AN320
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH212_0.2-0.3	SE213398.020	LB213247	09 Nov 2020	10 Nov 2020	08 May 2021	12 Nov 2020	08 May 2021	13 Nov 2020
QD1	SE213398.021	LB213247	09 Nov 2020	10 Nov 2020	08 May 2021	12 Nov 2020	08 May 2021	13 Nov 2020
Trace Metals (Dissolved) in	n Water by ICPMS						Method: I	ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE213398.022	LB213170	09 Nov 2020	10 Nov 2020	08 May 2021	11 Nov 2020	08 May 2021	11 Nov 2020

TRH (Total Recoverable Hydrocarbons) in Soil

	nyarooarbono, in oon						moulouri	um (res) [mitth attr
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M_0.5-0.6	SE213398.001	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH201M_1.2-1.3	SE213398.002	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH202M_0.4-0.5	SE213398.003	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH202M_2.4-2.5	SE213398.004	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH202M_3.9-4.0	SE213398.005	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH203_0.1-0.2	SE213398.006	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH203_0.6-0.7	SE213398.007	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH204_0.2-0.3	SE213398.008	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH205M_0.2-0.3	SE213398.009	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH205M_1.3-1.4	SE213398.010	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH206_0.2-0.3	SE213398.011	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH206_0.6-0.7	SE213398.012	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH207_0.2-0.3	SE213398.013	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH207_0.9-1.0	SE213398.014	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH208_0.2-0.3	SE213398.015	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH209_0.2-0.3	SE213398.016	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH210_0.2-0.3	SE213398.017	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH211_0.2-0.3	SE213398.018	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH211_0.8-0.9	SE213398.019	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
BH212_0.2-0.3	SE213398.020	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
QD1	SE213398.021	LB213192	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	13 Nov 2020
TRH (Total Recoverable	Hydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analvsis Due	Analysed

Sample Name Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1 SE213398.02	2 LB213233	09 Nov 2020	10 Nov 2020	16 Nov 2020	12 Nov 2020	22 Dec 2020	16 Nov 2020

VOC's in Soil							Method: M	/IE-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M_0.5-0.6	SE213398.001	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH201M_1.2-1.3	SE213398.002	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH202M_0.4-0.5	SE213398.003	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH202M_2.4-2.5	SE213398.004	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH202M_3.9-4.0	SE213398.005	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH203_0.1-0.2	SE213398.006	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH203_0.6-0.7	SE213398.007	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH204_0.2-0.3	SE213398.008	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH205M_0.2-0.3	SE213398.009	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH205M_1.3-1.4	SE213398.010	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH206_0.2-0.3	SE213398.011	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH206_0.6-0.7	SE213398.012	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH207_0.2-0.3	SE213398.013	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH207_0.9-1.0	SE213398.014	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH208_0.2-0.3	SE213398.015	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH209_0.2-0.3	SE213398.016	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH210_0.2-0.3	SE213398.017	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH211_0.2-0.3	SE213398.018	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH211_0.8-0.9	SE213398.019	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH212_0.2-0.3	SE213398.020	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
QD1	SE213398.021	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
QTB1	SE213398.023	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

VOCs in Water							Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE213398.022	LB213329	09 Nov 2020	10 Nov 2020	16 Nov 2020	13 Nov 2020	23 Dec 2020	16 Nov 2020
Volatile Petroleum Hydro	carbons in Soil						Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M_0.5-0.6	SE213398.001	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH201M_1.2-1.3	SE213398.002	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH202M_0.4-0.5	SE213398.003	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH202M_2.4-2.5	SE213398.004	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH202M_3.9-4.0	SE213398.005	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH203_0.1-0.2	SE213398.006	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH203_0.6-0.7	SE213398.007	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH204_0.2-0.3	SE213398.008	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH205M_0.2-0.3	SE213398.009	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH205M_1.3-1.4	SE213398.010	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH206_0.2-0.3	SE213398.011	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH206_0.6-0.7	SE213398.012	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH207_0.2-0.3	SE213398.013	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH207_0.9-1.0	SE213398.014	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH208_0.2-0.3	SE213398.015	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH209_0.2-0.3	SE213398.016	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH210_0.2-0.3	SE213398.017	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH211_0.2-0.3	SE213398.018	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH211_0.8-0.9	SE213398.019	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
BH212_0.2-0.3	SE213398.020	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
2D1	SE213398.021	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	16 Nov 2020
QTB1	SE213398.023	LB213190	09 Nov 2020	10 Nov 2020	23 Nov 2020	11 Nov 2020	21 Dec 2020	17 Nov 2020
olatile Petroleum Hydro	carbons in Water						Method: I	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE213398.022	LB213329	09 Nov 2020	10 Nov 2020	16 Nov 2020	13 Nov 2020	23 Dec 2020	16 Nov 2020

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil				Method: M	e-(au)-[env]a
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	60 - 130%	113
	BH202M_0.4-0.5	SE213398.003	%	60 - 130%	105
	BH203_0.1-0.2	SE213398.006	%	60 - 130%	104
	BH204_0.2-0.3	SE213398.008	%	60 - 130%	105
	BH205M_0.2-0.3	SE213398.009	%	60 - 130%	102
	BH206_0.2-0.3	SE213398.011	%	60 - 130%	118
	BH207_0.2-0.3	SE213398.013	%	60 - 130%	105
	BH208_0.2-0.3	SE213398.015	%	60 - 130%	106
	BH209_0.2-0.3	SE213398.016	%	60 - 130%	101
	BH210_0.2-0.3	SE213398.017	%	60 - 130%	105
	BH211_0.2-0.3	SE213398.018	%	60 - 130%	105
	BH212_0.2-0.3	SE213398.020	%	60 - 130%	106
P Pesticides in Soil				Method: M	E-(AU)-[ENV]A
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	60 - 130%	110
	BH202M_0.4-0.5	SE213398.003	%	60 - 130%	108
	BH203_0.1-0.2	SE213398.006	%	60 - 130%	110
	BH204_0.2-0.3	SE213398.008	%	60 - 130%	108
	BH205M_0.2-0.3	SE213398.009	%	60 - 130%	110
	BH206_0.2-0.3	SE213398.011	%	60 - 130%	106
	BH207_0.2-0.3	SE213398.013	%	60 - 130%	108
	BH208_0.2-0.3	SE213398.015	%	60 - 130%	108
	BH209_0.2-0.3	SE213398.016	%	60 - 130%	90
	BH210_0.2-0.3	SE213398.017	%	60 - 130%	108
	BH211_0.2-0.3	SE213398.018	%	60 - 130%	108
	BH212_0.2-0.3	SE213398.020	%	60 - 130%	108
I4-p-terphenyl (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	60 - 130%	106
	BH202M_0.4-0.5	SE213398.003	%	60 - 130%	104
	BH203_0.1-0.2	SE213398.006	%	60 - 130%	106
	BH204 0.2-0.3	SE213398.008	%	60 - 130%	104
	BH205M_0.2-0.3	SE213398.009	%	60 - 130%	104
	BH206_0.2-0.3	SE213398.011	%	60 - 130%	104
	BH207_0.2-0.3	SE213398.013	%	60 - 130%	106
	BH208_0.2-0.3	SE213398.015	%	60 - 130%	106
	BH209_0.2-0.3	SE213398.016	%	60 - 130%	90
	BH210_0.2-0.3	SE213398.017	%	60 - 130%	106
	BH211_0.2-0.3	SE213398.018	%	60 - 130%	106
	BH212 0.2-0.3	SE213398.020	%	60 - 130%	106
H (Polynuclear Aromatic Hydrocarbons) in Soil					E-(AU)-[ENV]/
arameter	Somple Name	Sample Number	Unito		
	Sample Name	Sample Number	Units	Criteria	Recovery
-fluorobiphenyl (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	70 - 130%	110
	BH201M_1.2-1.3	SE213398.002	%	70 - 130%	108
	BH202M_0.4-0.5	SE213398.003	%	70 - 130%	108
	BH202M_3.9-4.0	SE213398.005	%	70 - 130%	108
	BH203_0.1-0.2	SE213398.006	%	70 - 130%	110
	BH203_0.6-0.7	SE213398.007	%	70 - 130%	110
	BH204_0.2-0.3	SE213398.008	%	70 - 130%	108
	BH205M_0.2-0.3	SE213398.009	%	70 - 130%	110
	BH205M_1.3-1.4	SE213398.010	%	70 - 130%	108
	BH206_0.2-0.3	SE213398.011	%	70 - 130%	106
	BH206_0.6-0.7	SE213398.012	%	70 - 130%	108
	BH207_0.2-0.3	SE213398.013	%	70 - 130%	108
	BH207_0.9-1.0	SE213398.014	%	70 - 130%	106
	BH208_0.2-0.3	SE213398.015	%	70 - 130%	108
	BH209_0.2-0.3	SE213398.016	%	70 - 130%	90
	BH210_0.2-0.3	SE213398.017	%	70 - 130%	108
	BH211_0.2-0.3	SE213398.018	%	70 - 130%	108
	BH211_0.8-0.9	SE213398.019	%	70 - 130%	108
	BH212_0.2-0.3	SE213398.020	%	70 - 130%	108

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

An (Polynuclear Aromatic Hydrocarbons) in Soli (continued)					Metriod: ME-(AO)-[EINV]AN4	
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %	
d14-p-terphenyl (Surrogate)	BH201M_1.2-1.3	SE213398.002	%	70 - 130%	106	
	BH202M_0.4-0.5	SE213398.003	%	70 - 130%	104	
	BH202M_3.9-4.0	SE213398.005	%	70 - 130%	104	
	BH203_0.1-0.2	SE213398.006	%	70 - 130%	106	
	BH203_0.6-0.7	SE213398.007	%	70 - 130%	106	
	BH204_0.2-0.3	SE213398.008	%	70 - 130%	104	
	BH205M_0.2-0.3	SE213398.009	%	70 - 130%	104	
	BH205M_1.3-1.4	SE213398.010	%	70 - 130%	84	
	BH206_0.2-0.3	SE213398.011	%	70 - 130%	104	
	BH206_0.6-0.7	SE213398.012	%	70 - 130%	104	
	BH207_0.2-0.3	SE213398.013	%	70 - 130%	106	
	BH207_0.9-1.0	SE213398.014	%	70 - 130%	100	
	BH208_0.2-0.3	SE213398.015	%	70 - 130%	106	
	BH209_0.2-0.3	SE213398.016	%	70 - 130%	90	
	BH210_0.2-0.3	SE213398.017	%	70 - 130%	106	
	BH211_0.2-0.3	SE213398.018	%	70 - 130%	106	
	BH211_0.8-0.9	SE213398.019	%	70 - 130%	104	
	BH212_0.2-0.3	SE213398.020	%	70 - 130%	106	
5-nitrobenzene (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	70 - 130%	102	
	BH201M_1.2-1.3	SE213398.002	%	70 - 130%	98	
	BH202M_0.4-0.5	SE213398.003	%	70 - 130%	98	
	BH202M_3.9-4.0	SE213398.005	%	70 - 130%	96	
	BH203_0.1-0.2	SE213398.006	%	70 - 130%	98	
	BH203_0.6-0.7	SE213398.007	%	70 - 130%	100	
	BH204_0.2-0.3	SE213398.008	%	70 - 130%	96	
	BH205M_0.2-0.3	SE213398.009	%	70 - 130%	98	
	BH205M_1.3-1.4	SE213398.010	%	70 - 130%	96	
	BH206_0.2-0.3	SE213398.011	%	70 - 130%	96	
	BH206_0.6-0.7	SE213398.012	%	70 - 130%	96	
	BH207_0.2-0.3	SE213398.013	%	70 - 130%	98	
	BH207_0.9-1.0	SE213398.014	%	70 - 130%	92	
	BH208_0.2-0.3	SE213398.015	%	70 - 130%	92	
	BH209_0.2-0.3	SE213398.016	%	70 - 130%	82	
	BH210_0.2-0.3	SE213398.017	%	70 - 130%	96	
	BH211_0.2-0.3	SE213398.018	%	70 - 130%	94	
	BH211_0.8-0.9	SE213398.019	%	70 - 130%	96	
	BH212_0.2-0.3	SE213398.020	%	70 - 130%	92	
Bs in Soil				Method: M	E-(AU)-[ENV]AI	
arameter	Sample Name	Sample Number	Units	Criteria	Recovery	
Fetrachloro-m-xylene (TCMX) (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	60 - 130%	113	

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	60 - 130%	113
	BH202M_0.4-0.5	SE213398.003	%	60 - 130%	105
	BH203_0.1-0.2	SE213398.006	%	60 - 130%	104
	BH204_0.2-0.3	SE213398.008	%	60 - 130%	105
	BH205M_0.2-0.3	SE213398.009	%	60 - 130%	102
	BH206_0.2-0.3	SE213398.011	%	60 - 130%	118
	BH207_0.2-0.3	SE213398.013	%	60 - 130%	105
	BH208_0.2-0.3	SE213398.015	%	60 - 130%	106
	BH209_0.2-0.3	SE213398.016	%	60 - 130%	101
	BH210_0.2-0.3	SE213398.017	%	60 - 130%	105
	BH211_0.2-0.3	SE213398.018	%	60 - 130%	105
	BH212 0.2-0.3	SE213398.020	%	60 - 130%	106

VOC's in Soil

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	60 - 130%	68
	BH201M_1.2-1.3	SE213398.002	%	60 - 130%	67
	BH202M_0.4-0.5	SE213398.003	%	60 - 130%	61
	BH202M_2.4-2.5	SE213398.004	%	60 - 130%	57 ①
	BH202M_3.9-4.0	SE213398.005	%	60 - 130%	64
	BH203_0.1-0.2	SE213398.006	%	60 - 130%	62
	BH203_0.6-0.7	SE213398.007	%	60 - 130%	59 ①

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)

Method: ME-(AU)-[ENV]AN433

arameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH204_0.2-0.3	SE213398.008	%	60 - 130%	61
	BH205M_0.2-0.3	SE213398.009	%	60 - 130%	60 ①
	BH205M_1.3-1.4	SE213398.010	%	60 - 130%	60
	BH206_0.2-0.3	SE213398.011	%	60 - 130%	58 ①
	BH206_0.6-0.7	SE213398.012	%	60 - 130%	59 ①
	BH207_0.2-0.3	SE213398.013	%	60 - 130%	57 ①
	BH207_0.9-1.0	SE213398.014	%	60 - 130%	59 ①
	BH208_0.2-0.3	SE213398.015	%	60 - 130%	60
	BH209_0.2-0.3	SE213398.016	%	60 - 130%	59 ①
	BH210_0.2-0.3	SE213398.017	%	60 - 130%	54 ①
	BH211_0.2-0.3	SE213398.018	%	60 - 130%	56 ①
	BH211_0.8-0.9	SE213398.019	%	60 - 130%	57 ①
	BH212_0.2-0.3	SE213398.020	%	60 - 130%	60 ①
	QD1	SE213398.021	%	60 - 130%	57 ①
	QTB1	SE213398.023	%	60 - 130%	87
4-1,2-dichloroethane (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	60 - 130%	83
	BH201M_1.2-1.3	SE213398.002	%	60 - 130%	85
	BH202M_0.4-0.5	SE213398.003	%	60 - 130%	80
	BH202M_2.4-2.5	SE213398.004	%	60 - 130%	75
	BH202M_3.9-4.0	SE213398.005	%	60 - 130%	85
	BH203_0.1-0.2	SE213398.006	%	60 - 130%	84
	BH203_0.6-0.7	SE213398.007	%	60 - 130%	81
	BH204_0.2-0.3	SE213398.008	%	60 - 130%	85
	BH205M 0.2-0.3	SE213398.009	%	60 - 130%	83
	BH205M_1.3-1.4	SE213398.010	%	60 - 130%	83
	BH206_0.2-0.3	SE213398.011	%	60 - 130%	83
	BH206_0.6-0.7	SE213398.012	%	60 - 130%	83
	BH207_0.2-0.3	SE213398.013	%	60 - 130%	82
	BH207_0.9-1.0	SE213398.014	%	60 - 130%	85
	BH208_0.2-0.3	SE213398.015	%	60 - 130%	85
	BH209_0.2-0.3	SE213398.016	%	60 - 130%	83
	BH210_0.2-0.3	SE213398.017	%	60 - 130%	79
	BH211_0.2-0.3	SE213398.018	%	60 - 130%	81
	BH211_0.8-0.9	SE213398.019	%	60 - 130%	82
	BH212_0.2-0.3	SE213398.020	%	60 - 130%	86
	QD1	SE213398.021	%	60 - 130%	83
	QTB1	SE213398.023	%	60 - 130%	91
8-toluene (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	60 - 130%	83
	BH201M_1.2-1.3	SE213398.002	%	60 - 130%	85
	BH202M_0.4-0.5	SE213398.003	%	60 - 130%	79
	BH202M_2.4-2.5	SE213398.004	%	60 - 130%	75
		SE213398.005			85
	BH202M_3.9-4.0		%	60 - 130%	
	BH203_0.1-0.2	SE213398.006	%	60 - 130%	83
	BH203_0.6-0.7	SE213398.007	%	60 - 130%	80
	BH204_0.2-0.3	SE213398.008	%	60 - 130%	84
	BH205M_0.2-0.3	SE213398.009	%	60 - 130%	82
	BH205M_1.3-1.4	SE213398.010	%	60 - 130%	84
	BH206_0.2-0.3	SE213398.011	%	60 - 130%	83
	BH206_0.6-0.7	SE213398.012	%	60 - 130%	84
	BH207_0.2-0.3	SE213398.013	%	60 - 130%	81
	BH207_0.9-1.0	SE213398.014	%	60 - 130%	86
	BH208_0.2-0.3	SE213398.015	%	60 - 130%	85
	BH209_0.2-0.3	SE213398.016	%	60 - 130%	84
	BH210_0.2-0.3	SE213398.017	%	60 - 130%	78
	BH210_0.2-0.3	SE213398.018	%	60 - 130%	80
	BH211_0.8-0.9	SE213398.019	%	60 - 130%	82
	BH212_0.2-0.3	SE213398.020	%	60 - 130%	86
	QD1	SE213398.021	%	60 - 130%	84
	QTB1	SE213398.023	%	60 - 130%	91

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water				Method: M	E-(AU)-[ENV]AN43:
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE213398.022	%	40 - 130%	105
d4-1,2-dichloroethane (Surrogate)	QR1	SE213398.022	%	40 - 130%	96
d8-toluene (Surrogate)	QR1	SE213398.022	%	40 - 130%	98
Volatile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	60 - 130%	68
	BH201M_1.2-1.3	SE213398.002	%	60 - 130%	67
	BH202M_0.4-0.5	SE213398.003	%	60 - 130%	61
	BH202M 2.4-2.5	SE213398.004	%	60 - 130%	57 ①
	BH202M_3.9-4.0	SE213398.005	%	60 - 130%	64
	BH203_0.1-0.2	SE213398.006	%	60 - 130%	62
	BH203_0.6-0.7	SE213398.007	%	60 - 130%	59 ①
	BH204_0.2-0.3	SE213398.008	%	60 - 130%	61
	BH205M_0.2-0.3	SE213398.009	%	60 - 130%	60 ①
	BH205M_1.3-1.4	SE213398.010	%	60 - 130%	60
	BH206_0.2-0.3	SE213398.011	%	60 - 130%	58 ①
	BH206_0.6-0.7	SE213398.012	%	60 - 130%	59 ①
	BH207_0.2-0.3	SE213398.013	%	60 - 130%	57 ①
	BH207_0.9-1.0	SE213398.014	%	60 - 130%	59 ①
	BH208_0.2-0.3	SE213398.015	%	60 - 130%	60
	BH209_0.2-0.3	SE213398.016	%	60 - 130%	59 ①
	BH210_0.2-0.3	SE213398.017	%	60 - 130%	54 ①
	BH211_0.2-0.3	SE213398.018	%	60 - 130%	56 ①
	BH211_0.8-0.9	SE213398.019	%	60 - 130%	57 ①
	BH212_0.2-0.3	SE213398.020	%	60 - 130%	60 ①
	QD1	SE213398.021	%	60 - 130%	57 ①
d4-1,2-dichloroethane (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	60 - 130%	83
	BH201M_1.2-1.3	SE213398.002	%	60 - 130%	85
	BH202M_0.4-0.5	SE213398.003	%	60 - 130%	80
	BH202M_2.4-2.5	SE213398.004	%	60 - 130%	75
	BH202M_3.9-4.0	SE213398.005	%	60 - 130%	85
	BH203_0.1-0.2	SE213398.006	%	60 - 130%	84
	BH203_0.6-0.7	SE213398.007	%	60 - 130%	81
	BH204_0.2-0.3	SE213398.008	%	60 - 130%	85
	BH205M_0.2-0.3	SE213398.009	%	60 - 130%	83
	BH205M_1.3-1.4	SE213398.010	%	60 - 130%	83
	BH206_0.2-0.3	SE213398.011	%	60 - 130%	83
	BH206_0.6-0.7	SE213398.012	%	60 - 130%	83
	BH207_0.2-0.3	SE213398.013	%	60 - 130%	82
	BH207_0.9-1.0	SE213398.014	%	60 - 130%	85
	BH208_0.2-0.3	SE213398.015	%	60 - 130%	85
	BH209_0.2-0.3	SE213398.016	%	60 - 130%	83
	BH210_0.2-0.3	SE213398.017	%	60 - 130%	79
	BH211_0.2-0.3	SE213398.018	%	60 - 130%	81
	BH211_0.8-0.9	SE213398.019	%	60 - 130%	82
	BH212_0.2-0.3	SE213398.020	%	60 - 130%	86
	QD1	SE213398.021	%	60 - 130%	83
d8-toluene (Surrogate)	BH201M_0.5-0.6	SE213398.001	%	60 - 130%	83
	BH201M_1.2-1.3	SE213398.002	%	60 - 130%	85
	BH202M_0.4-0.5	SE213398.003	%	60 - 130%	79
	BH202M_2.4-2.5	SE213398.004	%	60 - 130%	75
	BH202M_3.9-4.0	SE213398.005	%	60 - 130%	85
	BH203_0.1-0.2	SE213398.006	%	60 - 130%	83
	BH203_0.6-0.7	SE213398.007	%	60 - 130%	80
	BH204_0.2-0.3	SE213398.008	%	60 - 130%	84
	BH205M_0.2-0.3	SE213398.009	%	60 - 130%	82
	BH205M_1.3-1.4	SE213398.010	%	60 - 130%	84
	BH206_0.2-0.3	SE213398.011	%	60 - 130%	83
	BH206_0.6-0.7	SE213398.012	%	60 - 130%	84
	BH207_0.2-0.3	SE213398.013	%	60 - 130%	81

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

d8-toluene (Surrogate)

Method: ME-(AU)-[ENV]AN433

98

40 - 130%

%

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH207_0.9-1.0	SE213398.014	%	60 - 130%	86
	BH208_0.2-0.3	SE213398.015	%	60 - 130%	85
	BH209_0.2-0.3	SE213398.016	%	60 - 130%	84
	BH210_0.2-0.3	SE213398.017	%	60 - 130%	78
	BH211_0.2-0.3	SE213398.018	%	60 - 130%	80
	BH211_0.8-0.9	SE213398.019	%	60 - 130%	82
	BH212_0.2-0.3	SE213398.020	%	60 - 130%	86
	QD1	SE213398.021	%	60 - 130%	84
Volatile Petroleum Hydrocarbons in Water				Method: M	IE-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE213398.022	%	40 - 130%	105
d4-1,2-dichloroethane (Surrogate)	QR1	SE213398.022	%	60 - 130%	96

SE213398.022

QR1

METHOD BLANKS

SE213398 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN3				
Sample Number	Parameter	Units	LOR	Result
LB213235.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil				Method: ME-(AU)-[ENV]AN312
Sample Number	Parameter	U	nits LOR	Result
LB213205.001	Mercury	mg	/kg 0.05	<0.05
LB213249.001	Mercury	m	/kg 0.05	<0.05

OC Pesticides in Soil

Pesticides in Soil			Meth	od: ME-(AU)-[ENV]
nple Number	Parameter	Units	LOR	Result
B213192.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	92

OP Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result
LB213192.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	112
	d14-p-terphenyl (Surrogate)	%	-	108
PAH (Polynuclear Aromatic Hydrocarbons) in Soi	I		Meth	od: ME-(AU)-[ENV]AN4
Sample Number	Parameter	Units	LOR	Result
LB213192.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1

Anthracene

<0.1

mg/kg

0.1

METHOD BLANKS

SE213398 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH C10-C36 Total

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Sample Number LOR Result Parameter Units LB213192.001 Fluoranthene 0.1 <0.1 mg/kg Pyrene mg/kg 0.1 < 0.1 Benzo(a)anthracene 0.1 <0.1 mg/kg Chrysene 0.1 <0.1 mg/kg Benzo(a)pyrene mg/kg 01 <0.1 Indeno(1,2,3-cd)pyrene mg/kg 0.1 <0.1 <0.1 Dibenzo(ah)anthracene 0.1 ma/ka Benzo(ghi)perylene mg/kg 0.1 < 0.1 Total PAH (18) 0.8 <0.8 mg/kg Surrogates d5-nitrobenzene (Surrogate) 108 % -2-fluorobiphenyl (Surrogate) % 112 d14-p-terphenyl (Surrogate) % 108 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb Parameter Units LOR Result LB213192.001 Arochlor 1016 mg/kg 0.2 < 0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 mg/kg 0.2 < 0.2 Arochlor 1242 0.2 < 0.2 mg/kg Arochlor 1248 0.2 <0.2 mg/kg Arochlor 1254 mg/kg 0.2 < 0.2 Arochlor 1260 0.2 <0.2 mg/kg Arochlor 1262 0.2 <0.2 mg/kg Arochlor 1268 mg/kg 0.2 <0.2 Total PCBs (Arochlors) mg/kg 1 <1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) 92 % Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Result Parameter Units LOR LB213201.001 Arsenic, As <1 mg/kg 1 Cadmium, Cd 0.3 <0.3 mg/kg Chromium, Cr mg/kg 0.5 <0.5 Copper, Cu mg/kg 0.5 <0.5 Nickel, Ni 0.5 <0.5 mg/kg Lead, Pb mg/kg 1 <1 Zinc, Zn 2 <2.0 mg/kg LB213247.001 <1 Arsenic, As mg/kg 1 Cadmium Cd mg/kg 0.3 <0.3 Chromium, Cr mg/kg 0.5 <0.5 0.5 <0.5 Copper, Cu mg/kg Nickel, Ni mg/kg 0.5 <0.5 Lead, Pb mg/kg <1 1 Zinc, Zn 2 <2.0 mg/kg Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number Units LOR Result Parameter LB213170.001 Arsenic, As µg/L <1 1 Cadmium, Cd µg/L 0.1 <0.1 Chromium, Cr µg/L 1 <1 Copper, Cu <1 1 µg/L Lead, Pb µg/L 1 <1 Nickel, Ni µg/L 1 <1 Zinc, Zn µg/L 5 <5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Result Sample Number Units LOR Parameter LB213192 001 TRH C10-C14 20 <20 mg/kg TRH C15-C28 mg/kg 45 <45 45 <45 TRH C29-C36 mg/kg TRH C37-C40 mg/kg 100 <100

<110

110

mg/kg

SE213398 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

TRH (Total Recoverabl	le Hydrocarbons) in Water			Met	hod: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB213233.001		TRH C10-C14	µg/L	50	<50
		TRH C15-C28	µg/L	200	<200
		TRH C29-C36	µg/L	200	<200
		TRH C37-C40	µg/L	200	<200
/OC's in Soil				Met	hod: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B213190.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	92
		d8-toluene (Surrogate)	%	-	90
		Bromofluorobenzene (Surrogate)	%	-	77
	Totals	Total BTEX	mg/kg	0.6	<0.6
OCs in Water				Met	hod: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B213329.001	Monocyclic Aromatic	Benzene	µg/L	0.5	<0.5
	Hydrocarbons	Toluene	µg/L	0.5	<0.5
		Ethylbenzene	µg/L	0.5	<0.5
		m/p-xylene	µg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	µg/L	0.5	<0.5
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	95
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	102
olatile Petroleum Hyd	rocarbons in Soil			Met	hod: ME-(AU)-[ENV]A
Sample Number		Parameter	Units	LOR	Result
LB213190.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	92

Volatile Petroleum Hydrocarbons in Water

Sample Number		Parameter	Units	LOR	Result
LB213329.001		TRH C6-C9	μg/L	40	<40
	Surrogates	d4-1,2-dichloroethane (Surrogate)	%	-	95
		d8-toluene (Surrogate)	%	-	96
		Bromofluorobenzene (Surrogate)	%	-	102

Method: ME-(AU)-[ENV]AN433

Method: ME-(AU)-[ENV]AN312

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)	in Water				Metho	d: ME-(AU)-[envjan311(p	Perth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213457.015	LB213235.012	Mercury	μg/L	0.0001	0.00962	-0.0008	200	198

Mercury in Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213398.011	LB213205.014	Mercury	mg/kg	0.05	0.20	0.16	58	22
SE213398.019	LB213205.023	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE213418.001	LB213249.014	Mercury	mg/kg	0.05	0.0019261916	60.0008659475	200	0
SE213418.008	LB213249.022	Mercury	mg/kg	0.05	0.0011226664	40.0013667980	200	0
Moisture Content						Meth	od: ME-(AU)-	ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213398.010	LB213195.011	% Moisture	%w/w	1	23.7	22.0	34	8
SE213398.020	LB213195.022	% Moisture	%w/w	1	17.6	17.3	36	2

OC Pesticides in Soil

C Pesticides in §							od: ME-(AU)-	
riginal	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
E213398.020	LB213192.028	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Lindane	mg/kg	0.1	<0.1	<0.1	200	0
		Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
		Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
		Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
		Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
		o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
		Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
		trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
		Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
		Endrin	mg/kg	0.2	<0.2	<0.2	200	0
		o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
		p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
		p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
		Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
		Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
		Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
		Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
		Mirex	mg/kg	0.1	<0.1	<0.1	200	0
		Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.15	30	3

Original Duplicate Criteria % RPD % Original Units LOR Duplicate Parameter SE213398.010 I B213192 014 Naphthalene mg/kg 0.1 <0.1 <0.1 200 0 2-methylnaphthalene 0.1 <0.1 <0.1 200 0 mg/kg <0.1 <0.1 200 0 1-methylnaphthalene 0.1 mg/kg Acenaphthylene mg/kg 0.1 <0.1 <0.1 200 0 Acenaphthene 0.1 <0.1 <0.1 200 0 mg/kg <0.1 <0.1 200 Fluorene 0.1 0 mg/kg Phenanthrene mg/kg 0.1 < 0.1 < 0.1 200 0 Anthracene 0.1 <0.1 <0.1 200 0 mg/kg <0.1 200 Fluoranthene 0.1 <0.1 0 mg/kg Pyrene mg/kg 0.1 <0.1 <0.1 200 0 Benzo(a)anthracene <0.1 <0.1 200 0 mg/kg 0.1

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

		ons) in Soil (continu	· · · · · · · · · · · · · · · · · · ·					od: ME-(AU)	
original	Duplicate		Parameter	Units	LOR	Original	Duplicate		
E213398.010	LB213192.014		Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	mg/kg	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>mg/kg</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	mg/kg	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>mg/kg</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	mg/kg	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surragatas			- 0.0		0.5	30	2
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg		0.5			
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.6	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2
Bs in Soil							Metho	od: ME-(AU)	-[ENV]A
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
213398.020	LB213192.028		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
	20210102.020		Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221 Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1232						C
				mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	C
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	C
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	3
tal Recoverable	Elements in Soil/Wa	iste Solids/Material	IS DY ICPOES				Method: ME-	(AU)-[ENV]A	\N040//
	Elements in Soil/Wa	ste Solids/Material	•	Unito	LOP	Original	Method: ME-		
riginal	Duplicate	ste Solids/Material	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPI
riginal		iste Solids/Material	Parameter Arsenic, As	mg/kg	1	9	Duplicate 9	Criteria % 41	RPI
riginal	Duplicate	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd	mg/kg mg/kg	1 0.3	9 <0.3	Duplicate 9 <0.3	Criteria % 41 200	RPI
riginal	Duplicate	ste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg	1 0.3 0.5	9 <0.3 15	Duplicate 9 <0.3 17	Criteria % 41 200 33	RPI 3 0
riginal	Duplicate	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd	mg/kg mg/kg	1 0.3	9 <0.3	Duplicate 9 <0.3	Criteria % 41 200	RPI 3 0
riginal	Duplicate	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg	1 0.3 0.5	9 <0.3 15	Duplicate 9 <0.3 17	Criteria % 41 200 33	RPI 3 0 14
tal Recoverable riginal E213398.010	Duplicate	ste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5	9 <0.3 15 9.0	Duplicate 9 <0.3 17 7.8	Criteria % 41 200 33 36	RPI 3 0 14 14 3
riginal	Duplicate	ste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 0.5	9 <0.3 15 9.0 1.6	Duplicate 9 <0.3	Criteria % 41 200 33 36 62	
riginal 2213398.010	Duplicate	ste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 0.5 1	9 <0.3 15 9.0 1.6 12	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39	RPI 3 0 1 1 3 3 3 1
riginal 2213398.010	Duplicate LB213201.014	ste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 1	9 <0.3 15 9.0 1.6 12 11 4	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51	RPI 3 0 1 1 1 3 3 3 3 1 1 2
riginal	Duplicate LB213201.014	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 0.5 1 2 1 0.3	9 <0.3 15 9.0 1.6 12 11 4 <0.3	Duplicate 9 <0.3 17 7.8 1.5 12 11 5 <0.3	Criteria % 41 200 33 36 62 39 48 51 200	RPI 3 (1 1 3 3 3 3 1 1 2 (
riginal E213398.010	Duplicate LB213201.014	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12	Duplicate 9 <0.3 17 7.8 1.5 12 11 5 <0.3 13	Criteria % 41 200 33 36 62 39 48 51 200 34	RPI 3 0 1 3 3 3 3 1 2 0 7
riginal =213398.010	Duplicate LB213201.014	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9	Duplicate 9 <0.3 17 7.8 1.5 12 11 5 <0.3 13 9.4	Criteria % 41 200 33 36 62 39 48 51 200 34 35	RPI 3 0 1 1 1 3 3 3 3 3 1 1 2 2 0 0 7 7 5
riginal 2213398.010	Duplicate LB213201.014	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Linc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49	RPD 3 0 1 1 3 3 3 3 1 2 0 0 7 7 5 5 3
riginal =213398.010	Duplicate LB213201.014	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41	RPI 3 0 1 1 1 3 3 3 1 1 2 0 0 0 7 7 5 5 3 3 2
riginal 5213398.010 5213398.019	Duplicate LB213201.014 LB213201.024	ste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5 1 2	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48	RPI 3 0 1 1 1 3 3 3 1 1 2 2 0 0 0 7 7 5 5 3 3 2 2 1
riginal E213398.010	Duplicate LB213201.014	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 2 1	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 9 2.7 8 11 4.2450749844	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48 53	RPI 3 0 1 1 3 3 3 1 1 2 0 0 7 7 5 3 3 2 2 1 1 3
riginal E213398.010	Duplicate LB213201.014 LB213201.024	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd	mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 0.3	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.0353576588	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48 53 200	RPI 3 1 3 1 2 0 7 5 3 2 1 2 1 2 1 3 3 1 3 1 3 2 1 3 2 1 3 0
riginal 2213398.010	Duplicate LB213201.014 LB213201.024	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 2 1	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 9 2.7 8 11 4.2450749844	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48 53	RPI 3 0 1 1 3 2 0 1 3 2 2 3 3 3 3 2 1 3 2 1 3
riginal 5213398.010 5213398.019	Duplicate LB213201.014 LB213201.024	ste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd	mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 0.3	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.0353576588	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48 53 200	RPP ::::::::::::::::::::::::::::::::::::
riginal 2213398.010 2213398.019	Duplicate LB213201.014 LB213201.024	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 0.3 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 9 2.7 8 11 4.2450749844 0.0353576585 12.118190692	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48 53 200 34	RPP ::::::::::::::::::::::::::::::::::::
riginal 2213398.010 2213398.019	Duplicate LB213201.014 LB213201.024	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu	mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 9 2.7 8 11 4.2450749844 0.0353576585 12.118190692 5.1354843133	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48 53 200 34 40	RPP 3 4 1
riginal 2213398.010 2213398.019	Duplicate LB213201.014 LB213201.024	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.0353576588 12.118190692 5.1354843133 6.0211505417	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48 53 200 34 40 38	RPU 3 0 1 1 1 1 1 1 1 2
riginal 2213398.010 2213398.019	Duplicate LB213201.014 LB213201.024	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cd Chromium, Cd Chromium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn	mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5 1	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.0353576588 12.118190692 5.1354843133 6.0211505417 5.8460870126 21.793253414	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48 53 200 34 40 38 40 38 47 40	RPU 3 0 0 1 1 1 1 1 1 1 2
riginal 2213398.010 2213398.019	Duplicate LB213201.014		Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Capper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As	mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5 1 2 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.0353576584 12.118190692 5.1354843133 6.0211505417 5.8460870126 21.793253414 5.0218938267	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 41 48 53 200 34 40 38 40 38 47 40 52	RPU 3 0 1 1 1 1 1 1 1 1 1 2
riginal 5213398.010 5213398.019 5213398.019	Duplicate LB213201.014	In the solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Arsenic, As Cadmium, Cd	mg/kg	1 0.3 0.5 0.5 1 2 1 1 0.3 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.0353576584 12.118190692 5.1354843133 6.0211505417 5.8460870126 21.793253414 5.0218938267 0.0520597717	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48 53 200 34 40 38 40 38 47 40 52 200	RPI 3 () 1 1 1 1 1 1 1 1 2
riginal 2213398.010 2213398.019 2213398.019	Duplicate LB213201.014	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr	mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5 1 2 1 0.3 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.0353576582 12.118190692 5.1354843133 5.1354843133 5.218938267 0.0520597717 12.443534894	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48 53 200 34 41 48 53 200 34 34 40 38 47 40 52 200 34	RPJ 3 4 5 6 7
riginal =213398.010	Duplicate LB213201.014	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cd Chromium, Cd Chromium, Cd Chromium, Cr Copper, Cu	mg/kg mg/kg </td <td>1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5</td> <td>9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.0353576585 12.118190692 5.1354843133 6.0211505417 5.8460870126 21.793253414 5.0218938267 0.0520597717 12.443534894 4.7919978745</td> <td>Duplicate 9 <0.3</td> 17 7.8 1.5 12 11 5 <0.3	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.0353576585 12.118190692 5.1354843133 6.0211505417 5.8460870126 21.793253414 5.0218938267 0.0520597717 12.443534894 4.7919978745	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48 53 200 34 40 38 40 38 40 38 40 53 200 34 40 38 40 38 40 38 40 38 40 38 41 40 38 41 40 38 41 40 40 41 40 40 41 40 41 40 41 40 41 40 41 40 41 40 41 40 41 40 40 41 40 40 40 40 40 40 40 40 40 40 40 40 40	RPI 3 () 1 1 1 1 2
riginal 2213398.010 2213398.019 2213398.019	Duplicate LB213201.014	iste Solids/Material	Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.035357658 12.118190692 5.1354843133 6.0211505411 5.8460870126 21.793253414 5.0218932637 0.0520597717 12.443534894 4.7919978745 7.0526414055	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 35 49 41 48 53 200 34 40 38 40 38 47 40 52 200 34 40 52 200 34 41 38	RPI 3 () 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
riginal 2213398.010 2213398.019 2213398.019	Duplicate LB213201.014		Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb	mg/kg mg/kg </td <td>1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 1 2 1 0.5 1 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5</td> <td>9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.035357658 12.118190692 5.1354843133 6.0211505411 5.8460870126 21.793253414 5.0218932637 0.0520597717 12.443534894 4.7919978745 7.0526414055</td> <td>Duplicate 9 <0.3</td> 17 7.8 1.5 12 11 5 <0.3	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 1 2 1 0.5 1 0.5 1 0.5 0.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.035357658 12.118190692 5.1354843133 6.0211505411 5.8460870126 21.793253414 5.0218932637 0.0520597717 12.443534894 4.7919978745 7.0526414055	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 48 53 200 34 40 38 49 41 48 53 200 34 40 38 40 38 47 40 52 200 34 41 40 38 47	RPJ \$ (() 1 1 1 1 1 2
iginal 213398.010 213398.019 213398.019	Duplicate LB213201.014		Parameter Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni Lead, Pb Zinc, Zn Arsenic, As Cadmium, Cd Chromium, Cr Copper, Cu Nickel, Ni	mg/kg	1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 1 2 1 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	9 <0.3 15 9.0 1.6 12 11 4 <0.3 12 8.9 2.7 8 11 4.2450749844 0.035357658 12.118190692 5.1354843133 6.0211505417 5.8460870126 21.793253414 5.0218938267 0.0520597717 12.443534894 4.7919978745 7.0526414051 7.0734653138	Duplicate 9 <0.3	Criteria % 41 200 33 36 62 39 48 51 200 34 48 53 200 34 40 38 40 38 40 38 40 38 40 38 40 38 41 40 38 40 38 41 40 52 200 34 41	RPI :: ::

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Trace Metals (Dis	solved) in Water by ICPMS	(continued)				Meth	od: ME-(AU)-	ENVJAN318
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213403.004	LB213170.008	Copper, Cu	µg/L	1	1.584	1.593	78	1
		Zinc, Zn	µg/L	5	1.002	1.065	200	0

TRH (Total Recoverable Hydrocarbons) in Soil

	erable Hydrocarbons	y in 30ii						od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213398.010	LB213192.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE213398.021	LB213192.029		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH >C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 - Naphthalene (F2)	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
OC's in Soil							Metho	od: ME-(AU)-	
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD ^o
E213398.010	LB213190.015	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.3	8.1	50	3
			d8-toluene (Surrogate)	mg/kg	-	8.4	8.2	50	2
			Bromofluorobenzene (Surrogate)	mg/kg		6.0	5.8	50	4
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
		10(0)5	Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
E213398.021	LB213190.033	Monocyclic	Benzene	mg/kg	0.0	<0.0	0.0	200	0
JL2 13330.U2 I	LDZ 13190.033	Aromatic	Toluene		0.1	<0.1	0.0021158895	200	0
		Aromatic	I Uluelle	mg/kg	0.1	\$0.1	0.0021156895	200	0

		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.3	8.1	50	3
			d8-toluene (Surrogate)	mg/kg	-	8.4	8.2	50	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.0	5.8	50	4
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE213398.021	LB213190.033	Monocyclic	Benzene	mg/kg	0.1	<0.1	0	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	0.0021158895	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	0.0006512652	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0.0016785890	200	0
			o-xylene	mg/kg	0.1	<0.1	0.0006655412	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0.0028702356	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.3	8.4182668437	50	2
			d8-toluene (Surrogate)	mg/kg	-	8.4	8.4582559620	50	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.7	5.7105089106	50	0
		Totals	Total Xylenes	mg/kg	0.3	<0.3	0.0023441303	200	0
			Total BTEX	mg/kg	0.6	<0.6	0	200	0
VOCs in Water							Meth	od: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213453.009	LB213329.022	Monocyclic	Benzene	μg/L	0.5	0.055918988	37 0.053299569	200	0
		Aromatic	Toluene	μg/L	0.5	0.168202104	47 0.155734626	200	0
			Ethylbenzene	μg/L	0.5	0.026361972	27 0.021022708	200	0
			m/p-xylene	μg/L	1	0.074377208	33 0.056326342	200	0
			o-xylene	μg/L	0.5	0.032666303	39 0.024711951	200	0
		Polycyclic	Naphthalene	µg/L	0.5	0.062908930	0 0.026736799	200	0

Surrogates

d4-1,2-dichloroethane (Surrogate)

d8-toluene (Surrogate)

2

30

30

9.6520585826 9.422369602

9.7809303416 9.708826041

µg/L

µg/L

Bromofluorobenzene (Surrogate)

Benzene (F0)

VPH F Bands

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213453.009	LB213329.022	Surrogates	Bromofluorobenzene (Surrogate)	μg/L	-		74 10.72761314	30	2
olatile Petroleum	Hydrocarbons in Soi	-	· · · · ·				Metho	d: ME-(AU)-	[ENV]AN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213398.010	LB213190.015		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.3	8.1	30	3
			d8-toluene (Surrogate)	mg/kg	-	8.4	8.2	30	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	6.0	5.8	30	4
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE213398.021	LB213190.033		TRH C6-C10	mg/kg	25	<25	0	200	0
			TRH C6-C9	mg/kg	20	<20	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	8.3	8.4182668437	30	2
			d8-toluene (Surrogate)	mg/kg	-	8.4	8.4582559620	30	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	5.7	5.7105089106	30	0
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	0	200	0
olatile Petroleum	Hydrocarbons in Wa	ter					Metho	d: ME-(AU)-	(ENVJAN
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
SE213453.009	LB213329.022		TRH C6-C10	µg/L	50	0	0	200	0
			TRH C6-C9	µg/L	40	0	0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.652058582	6 9.422369602	30	2
			d8-toluene (Surrogate)	µg/L	-	9.780930341	6 9.708826041	30	1
			Bromofluorobenzene (Surrogate)	µg/L	-	10.565103957	74 10.72761314	30	2
		VPH F Bands	Benzene (F0)	μg/L	0.5	0.055918988	7 0.053299569	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	0	0	200	0
SE213472.001	LB213329.023	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.709089902	3 9.634814693	30	1

µg/L

µg/L

-

0.5

10.7105839555 10.7546799

0

0

30

200

0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					N	/lethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB213205.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	102
LB213249.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	100
OC Pesticides in Soil					N	lethod: ME-(A	U)-[ENV]AN420

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB213192.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	98
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	89
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	87
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	85
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	87
		p,p'-DDT	mg/kg	0.1	0.1	0.2	60 - 140	75
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	92
OP Pesticides in S	oil					N	lethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB213192.002		Dichlorvos	mg/kg	0.5	2.2	2	60 - 140	112
		Diazinon (Dimpylate)	mg/kg	0.5	2.5	2	60 - 140	124
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.4	2	60 - 140	120
		Ethion	mg/kg	0.2	1.9	2	60 - 140	96
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.6	0.5	40 - 130	110
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	102
PAH (Polynuclear	Aromatic Hydroca	arbons) in Soil				N	lethod: ME-(A	U)-[ENV]AN4:
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB213192.002		Naphthalene	mg/kg	0.1	4.5	4	60 - 140	113
		Acenaphthylene	mg/kg	0.1	4.6	4	60 - 140	114
		Acenaphthene	mg/kg	0.1	4.4	4	60 - 140	110
		Phenanthrene	mg/kg	0.1	4.5	4	60 - 140	112
		Anthracene	mg/kg	0.1	4.6	4	60 - 140	114
		Fluoranthene	mg/kg	0.1	4.5	4	60 - 140	112
		Pyrene	mg/kg	0.1	4.6	4	60 - 140	114
		Benzo(a)pyrene	mg/kg	0.1	3.8	4	60 - 140	94
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	100
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.6	0.5	40 - 130	110
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	102
CBs in Soll						N	lethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %

LB213192.002 Arochlor 1260 mg/kg 0.2

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements i	Recoverable Elements in Soil/Waste Solids/Materials by ICPOES						/JAN040/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB213201.002	Arsenic, As	mg/kg	1	330	318.22	80 - 120	102
	Cadmium, Cd	mg/kg	0.3	4.6	5.41	80 - 120	85
	Chromium, Cr	mg/kg	0.5	38	38.31	80 - 120	100
	Copper, Cu	mg/kg	0.5	300	290	80 - 120	102
	Nickel, Ni	mg/kg	0.5	190	187	80 - 120	102
	Lead, Pb	mg/kg	1	94	89.9	80 - 120	105
	Zinc, Zn	mg/kg	2	270	273	80 - 120	99
LB213247.002	Arsenic, As	mg/kg	1	330	318.22	80 - 120	104
	Cadmium, Cd	mg/kg	0.3	5.1	5.41	80 - 120	94
	Chromium, Cr	mg/kg	0.5	35	38.31	80 - 120	92
	Copper, Cu	mg/kg	0.5	300	290	80 - 120	103
	Nickel, Ni	mg/kg	0.5	190	187	80 - 120	101
	Lead, Pb	mg/kg	1	96	89.9	80 - 120	107
	Zinc, Zn	mg/kg	2	270	273	80 - 120	100
Trace Metals (Dissolved) in V	ils (Dissolved) in Water by ICPMS						U)-[ENV]AN318

0.4

0.4

60 - 140

Sample Number	Parameter	Units	LOR

SE213398 R0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

O a secolar Massesha		ICPMS (continued)					Method: ME-(AU)-[EIAA]AIA
Sample Numbe	er	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB213170.002		Arsenic, As	μg/L	1	18	20	80 - 120	91
		Cadmium, Cd	μg/L	0.1	21	20	80 - 120	104
		Chromium, Cr	μg/L	1	21	20	80 - 120	106
		Copper, Cu	μg/L	1	22	20	80 - 120	109
		Lead, Pb	μg/L	1	19	20	80 - 120	95
		Nickel, Ni	μg/L	1	21	20	80 - 120	103
		Zinc, Zn	μg/L	5	22	20	80 - 120	109
RH (Total Recov	verable Hydrocarbo	ns) in Soil					Method: ME-(AU	
	-		Units	LOR	Result	Expected		Recovery
Sample Numbe LB213192.002	1	Parameter			37	Expected 40	60 - 140	,
LD213192.002		TRH C10-C14	mg/kg	20				93
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	85
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	80
	TRH F Bands	TRH >C10-C16	mg/kg	25	37	40	60 - 140	93
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	85
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	80
RH (Total Recov	verable Hydrocarbo	ns) in Water					Method: ME-(AU)-[ENV]AN
Sample Numbe	er	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB213233.002		TRH C10-C14	µg/L	50	1300	1200	60 - 140	104
		TRH C15-C28	µg/L	200	1400	1200	60 - 140	118
		TRH C29-C36	µg/L	200	1300	1200	60 - 140	109
	TRH F Bands	TRH >C10-C16	μg/L	60	1300	1200	60 - 140	110
	Thirt Danus	TRH >C16-C34 (F3)	μg/L	500	1400	1200	60 - 140	120
		TRH >C34-C40 (F4)	μg/L	500	620	600	60 - 140	103
			μ9/ε	500	020			
OC's in Soil							Method: ME-(AU)-[ENV]AI
Sample Numbe	ər	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB213190.002	Monocyclic	Benzene	mg/kg	0.1	3.7	5	60 - 140	73
	Aromatic	Toluene	mg/kg	0.1	3.7	5	60 - 140	74
		Ethylbenzene	mg/kg	0.1	4.0	5	60 - 140	81
		m/p-xylene	mg/kg	0.2	8.1	10	60 - 140	81
		o-xylene	mg/kg	0.1	4.1	5	60 - 140	81
	Surrogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	9.8	10	70 - 130	98
		d8-toluene (Surrogate)	mg/kg	-	9.7	10	70 - 130	97
		Bromofluorobenzene (Surrogate)	mg/kg	-	8.7	10	70 - 130	87
/OCs in Water							Method: ME-(AU	
				1.00				
Sample Numbe		Parameter	Units	LOR	Result	Expected		Recovery
LB213329.002	Monocyclic	Benzene	μg/L	0.5	51	45.45	60 - 140	113
	Aromatic	Toluene	µg/L	0.5	51	45.45	60 - 140	112
		Toluene Ethylbenzene	μg/L μg/L	0.5 0.5	51 51	45.45 45.45	60 - 140 60 - 140	112 111
		Ethylbenzene	µg/L	0.5	51	45.45	60 - 140	111
		Ethylbenzene m/p-xylene	μg/L μg/L	0.5 1	51 100	45.45 90.9	60 - 140 60 - 140	111 111
	Aromatic	Ethylbenzene m/p-xylene o-xylene	μg/L μg/L μg/L	0.5 1 0.5	51 100 52	45.45 90.9 45.45	60 - 140 60 - 140 60 - 140	111 111 114
	Aromatic	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L	0.5 1 0.5 -	51 100 52 10.3	45.45 90.9 45.45 10	60 - 140 60 - 140 60 - 140 60 - 140	111 111 114 103
/olatile Petroleun	Aromatic	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L μg/L μg/L	0.5 1 0.5 -	51 100 52 10.3 10.6	45.45 90.9 45.45 10 10 10	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130	111 111 114 103 106 101
	Aromatic Surrogates	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll	μg/L μg/L μg/L μg/L μg/L μg/L	0.5 1 0.5	51 100 52 10.3 10.6 10.1	45.45 90.9 45.45 10 10 10	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU	111 111 103 106 101
Sample Numbe	Aromatic Surrogates	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter	μg/L μg/L μg/L μg/L μg/L μg/L Units	0.5 1 - - - LOR	51 100 52 10.3 10.6 10.1 Result	45.45 90.9 45.45 10 10 10 Expected	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria %	111 111 114 103 106 101)-[ENV]AI Recover
Sample Numbe	Aromatic Surrogates	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg	0.5 1 0.5 - - - LOR 25	51 100 52 10.3 10.6 10.1 Result 82	45.45 90.9 45.45 10 10 10 Expected 92.5	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria % 60 - 140	111 111 114 103 106 101)-[ENV]Al Recover 89
Sample Numbe	Aromatic Surrogates n Hydrocarbons in S	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg	0.5 1 0.5 - - - - LOR 25 20	51 100 52 10.3 10.6 10.1 Result 82 70	45.45 90.9 45.45 10 10 10 Expected 92.5 80	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria % 60 - 140 60 - 140	111 111 103 106 101)-[ENV]At Recover 89 88
Sample Numbe	Aromatic Surrogates	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg	0.5 1 0.5 - - - - - - - - - 25 20 -	51 100 52 10.3 10.6 10.1 Result 82 70 9.8	45.45 90.9 45.45 10 10 10 Expected 92.5 80 10	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria % 60 - 140 60 - 140 70 - 130	111 114 103 106 101)-[ENV]AI Recover 89 88 98
Sample Numbe	Aromatic Surrogates In Hydrocarbons in S Ir Surrogates	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C8-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg	0.5 1 - - - - - - - - - - 25 20 - -	51 100 52 10.3 10.6 10.1 Result 82 70 9.8 8.7	45.45 90.9 45.45 10 10 10 0 Expected 92.5 80 10 10	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria % 60 - 140 60 - 140 70 - 130 70 - 130	111 111 114 103 106 101)-[ENV]AI Recover 89 88 98 88 98
Sample Numbe LB213190.002	Aromatic Surrogates n Hydrocarbons in S nr Surrogates VPH F Bands	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg	0.5 1 0.5 - - - - - - - - - 25 20 -	51 100 52 10.3 10.6 10.1 Result 82 70 9.8	45.45 90.9 45.45 10 10 10 Expected 92.5 80 10 10 10 62.5	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 60 - 140	111 111 114 103 106 101)-[ENV]AI Recover 89 88 98 88 98 87 94
Sample Numbe	Aromatic Surrogates In Hydrocarbons in S Ir Surrogates	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg	0.5 1 - - - - - - - - - - 25 20 - -	51 100 52 10.3 10.6 10.1 Result 82 70 9.8 8.7	45.45 90.9 45.45 10 10 10 Expected 92.5 80 10 10 10 62.5	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria % 60 - 140 60 - 140 70 - 130 70 - 130	111 111 114 103 106 101)-[ENV]AI Recover 89 88 98 88 98 87 94
Sample Numbe LB213190.002 /olatile Petroleun	Aromatic Surrogates In Hydrocarbons in S or Surrogates VPH F Bands In Hydrocarbons in V	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg	0.5 1 - - - - - - - - - - 25 20 - -	51 100 52 10.3 10.6 10.1 Result 82 70 9.8 8.7	45.45 90.9 45.45 10 10 10 Expected 92.5 80 10 10 10 62.5	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 60 - 140	111 111 114 103 106 101)-[ENV]AN Recovery 89 88 98 88 98 87 94
Sample Numbe LB213190.002 /olatile Petroleun Sample Numbe	Aromatic Surrogates In Hydrocarbons in S or Surrogates VPH F Bands In Hydrocarbons in V	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) /ater	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg	0.5 1 0.5 - - LOR 25 20 - - 25 25	51 100 52 10.3 10.6 10.1 Result 82 70 9.8 8.7 59	45.45 90.9 45.45 10 10 10 Expected 92.5 80 10 10 62.5	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(AU	111 111 114 103 106 101)-[ENV]AI Recover 89 88 98 87 94)-[ENV]AI
Sample Numbe	Aromatic Surrogates In Hydrocarbons in S or Surrogates VPH F Bands In Hydrocarbons in V	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oli Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) /ater Parameter	μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 1 0.5 - - LOR 25 20 - 25 LOR	51 100 52 10.3 10.6 10.1 Result 82 70 9.8 8.7 59 Result	45.45 90.9 45.45 10 10 10 Expected 92.5 80 10 10 62.5 Expected	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(AU Criteria %	111 111 114 103 106 101)-[ENV]AN Recover 98 88 98 87 94 94)-[ENV]AN Recover
Sample Numbe LB213190.002 /olatile Petroleun Sample Numbe	Aromatic Surrogates In Hydrocarbons in S In Surrogates VPH F Bands In Hydrocarbons in V In	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 1 0.5 - - - LOR 25 20 - 25 25 LOR 50	51 100 52 10.3 10.6 10.1 Result 82 70 9.8 8.7 59 Result 930 800	45.45 90.9 45.45 10 10 10 Expected 92.5 80 10 10 62.5 Expected 946.63 818.71	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(AU Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	111 111 114 103 106 101 P(ENV)AP Recovery 89 88 98 87 94 94 P(ENV)AP Recovery 98 98 98 98
Sample Numbe LB213190.002 /olatile Petroleun Sample Numbe	Aromatic Surrogates In Hydrocarbons in S or Surrogates VPH F Bands In Hydrocarbons in V	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) /ater Parameter TRH C6-C10 TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 1 0.5 - - - LOR 25 20 - 25 20 - 25 LOR 50 40	51 100 52 10.3 10.6 10.1 Result 82 70 9.8 8.7 59 Result 930 800 10.3	45.45 90.9 45.45 10 10 10 Expected 92.5 80 10 10 62.5 Expected 946.63 818.71 10	60 - 140 60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 60 - 140 Method: ME-(AU Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	111 111 114 103 106 101)-[ENV]AN Recovery 89 88 98 87 94)-[ENV]AN Recovery 98 98 87 94 10 94 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Sample Numbe LB213190.002 /olatile Petroleun Sample Numbe	Aromatic Surrogates In Hydrocarbons in S In Surrogates VPH F Bands In Hydrocarbons in V In	Ethylbenzene m/p-xylene o-xylene d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) oll Parameter TRH C6-C10 TRH C6-C9 d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.5 1 0.5 - - - LOR 25 20 - 25 20 - 25 LOR 50 40 -	51 100 52 10.3 10.6 10.1 Result 82 70 9.8 8.7 59 Result 930 800	45.45 90.9 45.45 10 10 10 Expected 92.5 80 10 10 62.5 Expected 946.63 818.71	60 - 140 60 - 140 60 - 140 70 - 130 70 - 130 Method: ME-(AU Criteria % 60 - 140 60 - 140 70 - 130 70 - 130 70 - 130 60 - 140 Method: ME-(AU Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	111 111 114 103 106 101 P-[ENV]AN Recovery 89 88 98 87 94 94 P-[ENV]AN Recovery 98 98 87 94

Method: ME-(AU)-[ENV]AN420

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(AU	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE213456.001	LB213249.004	Mercury	mg/kg	0.05	0.19	<0.05	0.2	83

OC Pesticides in Soil

C Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%																				
213398.003	LB213192.030		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	-	-																				
			Alpha BHC	mg/kg	0.1	<0.1	-	-																				
			Lindane	mg/kg	0.1	<0.1	-	-																				
			Heptachlor	mg/kg	0.1	<0.1	0.2	107																				
			Aldrin	mg/kg	0.1	<0.1	0.2	98																				
			Beta BHC	mg/kg	0.1	<0.1	-	-																				
			Delta BHC	mg/kg	0.1	<0.1	0.2	102																				
			Heptachlor epoxide	mg/kg	0.1	<0.1	-	-																				
			o,p'-DDE	mg/kg	0.1	<0.1	-	-																				
			Alpha Endosulfan	mg/kg	0.2	<0.2	-	-																				
			Gamma Chlordane	mg/kg	0.1	<0.1	-	-																				
			Alpha Chlordane	mg/kg	0.1	<0.1	-	-																				
			trans-Nonachlor	mg/kg	0.1	<0.1	-	-																				
												p,p'-DDE	mg/kg	0.1	<0.1	-	-											
																							Dieldrin	mg/kg	0.2	<0.2	0.2	92
																						Endrin	mg/kg	0.2	<0.2	0.2	94	
			o,p'-DDD	mg/kg	0.1	<0.1	-	-																				
			o,p'-DDT	mg/kg	0.1	<0.1	-	-																				
			Beta Endosulfan	mg/kg	0.2	<0.2	-	-																				
			p,p'-DDD	mg/kg	0.1	<0.1	-	-																				
			p,p'-DDT	mg/kg	0.1	<0.1	0.2	81																				
			Endosulfan sulphate	mg/kg	0.1	<0.1	-	-																				
			Endrin Aldehyde	mg/kg	0.1	<0.1	-	-																				
				-				Methoxychlor	mg/kg	0.1	<0.1	-	-															
					Endrin Ketone	mg/kg	0.1	<0.1	-	-																		
			Isodrin	mg/kg	0.1	<0.1	-	-																				
			Mirex	mg/kg	0.1	<0.1	-	-																				
			Total CLP OC Pesticides	mg/kg	1	<1	-	-																				
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	-	106																				

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE213398.003	LB213192.030		Dichlorvos	mg/kg	0.5	<0.5	2	94
			Dimethoate	mg/kg	0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	2	113
			Fenitrothion	mg/kg	0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	2	104
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	-	-
			Methidathion	mg/kg	0.5	<0.5	-	-
			Ethion	mg/kg	0.2	<0.2	2	82
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	-	-
	_		Total OP Pesticides*	mg/kg	1.7	<1.7	-	-
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	-	108
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	96
PAH (Polynuclea	r Aromatic Hydrocarbon	s) in Soil					M	ethod: ME-(AU)
QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE213398.003	LB213192.030		Naphthalene	mg/kg	0.1	<0.1	4	110

0.1 <0.1 2-methylnaphthalene mg/kg 1-methylnaphthalene mg/kg 0.1 <0.1 -<0.1 108 Acenaphthylene 0.1 4 mg/kg < 0.1 106 Acenaphthene mg/kg 0.1 4 Fluorene mg/kg 0.1 <0.1 107 Phenanthrene 0.1 <0.1 4 mg/kg

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Method: ME-(AU)-[ENV]AN420

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE213398.003	LB213192.030		Anthracene	mg/kg	0.1	<0.1	4	111
			Fluoranthene	mg/kg	0.1	<0.1	4	103
			Pyrene	mg/kg	0.1	<0.1	4	109
			Benzo(a)anthracene	mg/kg	0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	<0.1	4	86
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	-	-
	_		Total PAH (18)	mg/kg	0.8	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	-	94
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	-	108
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	-	96

QC Sample	Sample Number		Parameter	Units	LOR	Original	Spike	Recovery%
SE213398.003	LB213192.030		Arochlor 1016	mg/kg	0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	<0.2	0.4	87
			Arochlor 1262	mg/kg	0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	-	105

anto in SoliMiasta Solida/Matariala hy ICDOES T-4-1 D and the second

Fotal Recoverat	ble Elements in Soil/Waste Solid	Is/Materials by ICPOES				Method: ME	-(AU)-[ENV	AN040/AN320
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE213398.001	LB213201.004	Arsenic, As	mg/kg	1	47	8	50	78
		Cadmium, Cd	mg/kg	0.3	38	<0.3	50	76
		Chromium, Cr	mg/kg	0.5	55	17	50	77
		Copper, Cu	mg/kg	0.5	54	13	50	81
		Nickel, Ni	mg/kg	0.5	46	4.3	50	84
		Lead, Pb	mg/kg	1	62	16	50	92
		Zinc, Zn	mg/kg	2	62	17	50	90
SE213456.001	LB213247.004	Arsenic, As	mg/kg	1	40	3	50	73
		Cadmium, Cd	mg/kg	0.3	38	<0.3	50	76
		Chromium, Cr	mg/kg	0.5	59	26	50	66 ④
		Copper, Cu	mg/kg	0.5	240	220	50	46 ④
		Nickel, Ni	mg/kg	0.5	50	12	50	75
		Lead, Pb	mg/kg	1	70	36	50	67 ④
		Zinc. Zn	ma/ka	2	230	240	50	-11 ④

Trace Metals (Dissolved) in Water by ICPMS

Trace Metals (Di	ace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318							
QC Sample	Sample Number	Parameter	Unit	s LOR	Result	Original	Spike	Recovery%
SE213398.022	LB213170.004	Arsenic, As	μg/l	. 1	19	<1	20	96
		Cadmium, Cd	μg/l	. 0.1	21	<0.1	20	107
		Chromium, Cr	μg/l	. 1	22	<1	20	111
		Copper, Cu	μg/l	. 1	23	<1	20	113
		Lead, Pb	μg/l	. 1	20	<1	20	99
		Nickel, Ni	μg/l	. 1	22	<1	20	108
		Zinc, Zn	μg/l	. 5	25	<5	20	117
TRH (Total Reco	verable Hydrocarbons) in Soil					Mett	hod: ME-(Al	J)-IENVIAN403

QC Sample Sample Number Units LOR Parameter

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN403 TRH (Total Recoverable Hydrocarbons) in Soil (continued) QC Sample Sample Number e Recovery% Parameter Units LOR Original Spil SE213398.003 LB213192.030 TRH C10-C14 20 <20 40 123 mg/kg TRH C15-C28 mg/kg 45 <45 40 108 TRH C29-C36 45 <45 40 88 mg/kg TRH C37-C40 100 <100 mg/kg TRH C10-C36 Total mg/kg 110 <110 TRH >C10-C40 Total (F bands) mg/kg 210 <210 TRH F Bands TRH >C10-C16 25 <25 40 120 ma/ka TRH >C10-C16 - Naphthalene (F2) mg/kg 25 <25 TRH >C16-C34 (F3) 90 <90 40 100 mg/kg TRH >C34-C40 (F4) 120 <120 mg/kg VOC's in Soil Method: ME-(AU)-[ENV]AN433 Result Spike Recovery% QC Sample Sample Number Units LOR Original Parameter SE213398.001 LB213190.004 Monocyclic Benzene 0.1 3.5 <0.1 5 70 mg/kg Aromatic Toluene mg/kg 0.1 3.6 <0.1 5 71 Ethylbenzene mg/kg 0.1 3.9 <0.1 5 78 0.2 8.0 <0.2 10 80 m/p-xylene mg/kg o-xylene mg/kg 0.1 4.0 < 0.1 5 80 Naphthalene 0.1 <0.1 <0.1 Polycyclic mg/kg d4-1,2-dichloroethane (Surrogate) 8.5 10 85 Surrogates mg/kg 8.3 d8-toluene (Surrogate) mg/kg 8.6 8.3 10 86 Bromofluorobenzene (Surrogate) 7.2 6.8 10 72 mg/kg Totals Total Xylenes 0.3 12 <0.3 mg/kg Total BTEX mg/kg 0.6 23 <0.6 VOCs in Water Method: ME-(AU)-[ENV]AN433 LOR Spike Recovery% QC Sample Sample Number Parameter Units Result Original SE213398.022 LB213329.026 Monocyclic Benzene 0.5 49 <0.5 45.45 109 µg/L Aromatic Toluene µg/L 0.5 49 < 0.5 45.45 107 Ethylbenzene 0.5 49 <0.5 45 45 108 µg/L m/p-xylene 98 <1 90.9 108 µg/L 1 o-xvlene µg/L 0.5 50 <0.5 45.45 110 Polycyclic Naphthalene µg/L 0.5 49 <0.5 10.1 9.6 101 Surrogates d4-1,2-dichloroethane (Surrogate) µg/L d8-toluene (Surrogate) µg/L 10.4 9.8 104 _ Bromofluorobenzene (Surrogate) µg/L 10.2 10.5 102 Method: ME-(AU)-[ENV]AN433 Volatile Petroleum Hydrocarbons in Soil QC Sample Sample Number Units LOR Result Spike Recovery% Parameter Original SE213398 001 LB213190.005 **TRH C6-C10** mg/kg 25 79 <25 92.5 84 84 TRH C6-C9 mg/kg 20 68 <20 80 d4-1.2-dichloroethane (Surrogate) Surrogates ma/ka 8.5 8.3 10 85 d8-toluene (Surrogate) mg/kg 8.6 8.3 10 86 Bromofluorobenzene (Surrogate) 7.2 6.8 72 mg/kg VPH F Benzene (F0) mg/kg 0.1 3.5 <0.1 Bands TRH C6-C10 minus BTEX (F1) 25 56 <25 62.5 88 mg/kg Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number LOR Result Spike Recovery% Parameter Units Origin SE213398.022 LB213329.026 TRH C6-C10 µg/L 50 940 <50 946.63 99 TRH C6-C9 40 820 <40 818.71 100 µg/L d4-1,2-dichloroethane (Surrogate) Surrogates 0.0 9.6 102 µg/L d8-toluene (Surrogate) µg/L 0.0 9.8 104 Bromofluorobenzene (Surrogate) 0.0 10.5 102 µg/L VPH F Benzene (F0) 0.5 <0.5 µg/L Bands TRH C6-C10 minus BTEX (F1) µg/L 50 640 <50 639.67 100

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number Parameter

Units LOR

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Alejandra Beltran	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Alejandra.beltran@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E24175 28 Elizabeth St, Liverpool NSW	SGS Reference	SE213672 R0
Order Number	E24175	Date Received	17 Nov 2020
Samples	7	Date Reported	19 Nov 2020

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

Samples clearly labelled Yes Complete documentation received Yes SGS Ice Bricks Sample container provider Sample cooling method Samples received in correct containers Sample counts by matrix 7 Water Yes 17/11/2020 Type of documentation received COC Date documentation received Samples received in good order Yes Samples received without headspace Yes Sample temperature upon receipt 18°C Sufficient sample for analysis Yes Turnaround time requested Two Days

SGS Australia Pty Ltd ABN 44 000 964 278

SAMPLE SUMMARY

Environment, Health and Safety

Unit 16 33 Maddox St Alexandria NSW 2015 PO Box 6432 Bourke Rd BC Alexandria NSW 2015 t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Wa	ater						Method: ME-(AU)-[ENV	AN311(Perth)/AN312
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M-1	SE213672.001	LB213636	17 Nov 2020	17 Nov 2020	15 Dec 2020	18 Nov 2020	15 Dec 2020	18 Nov 2020
BH202M-1	SE213672.002	LB213636	17 Nov 2020	17 Nov 2020	15 Dec 2020	18 Nov 2020	15 Dec 2020	18 Nov 2020
BH205M-1	SE213672.003	LB213636	17 Nov 2020	17 Nov 2020	15 Dec 2020	18 Nov 2020	15 Dec 2020	18 Nov 2020
BH200_GWQD1	SE213672.004	LB213636	17 Nov 2020	17 Nov 2020	15 Dec 2020	18 Nov 2020	15 Dec 2020	18 Nov 2020
GWQR1	SE213672.005	LB213636	17 Nov 2020	17 Nov 2020	15 Dec 2020	18 Nov 2020	15 Dec 2020	18 Nov 2020
PAH (Polynuclear Aroma	tic Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M-1	SE213672.001	LB213633	17 Nov 2020	17 Nov 2020	24 Nov 2020	18 Nov 2020	28 Dec 2020	19 Nov 2020
BH202M-1	SE213672.002	LB213633	17 Nov 2020	17 Nov 2020	24 Nov 2020	18 Nov 2020	28 Dec 2020	19 Nov 2020
BH205M-1	SE213672.003	LB213633	17 Nov 2020	17 Nov 2020	24 Nov 2020	18 Nov 2020	28 Dec 2020	19 Nov 2020
BH200_GWQD1	SE213672.004	LB213633	17 Nov 2020	17 Nov 2020	24 Nov 2020	18 Nov 2020	28 Dec 2020	19 Nov 2020
GWQR1	SE213672.005	LB213633	17 Nov 2020	17 Nov 2020	24 Nov 2020	18 Nov 2020	28 Dec 2020	19 Nov 2020
Total Phenolics in Water							Method:	ME-(AU)-[ENV]AN289
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M-1	SE213672.001	LB213627	17 Nov 2020	17 Nov 2020	15 Dec 2020	18 Nov 2020	15 Dec 2020	18 Nov 2020
BH202M-1	SE213672.002	LB213627	17 Nov 2020	17 Nov 2020	15 Dec 2020	18 Nov 2020	15 Dec 2020	18 Nov 2020
BH205M-1	SE213672.003	LB213627	17 Nov 2020	17 Nov 2020	15 Dec 2020	18 Nov 2020	15 Dec 2020	18 Nov 2020
Trace Metals (Dissolved)							Method:	ME-(AU)-[ENV]AN318
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M-1	SE213672.001	LB213610	17 Nov 2020	17 Nov 2020	16 May 2021	17 Nov 2020	16 May 2021	18 Nov 2020
BH202M-1	SE213672.002	LB213610	17 Nov 2020	17 Nov 2020	16 May 2021	17 Nov 2020	16 May 2021	18 Nov 2020
BH205M-1	SE213672.003	LB213610	17 Nov 2020	17 Nov 2020	16 May 2021	17 Nov 2020	16 May 2021	18 Nov 2020
BH200_GWQD1	SE213672.004	LB213610	17 Nov 2020	17 Nov 2020	16 May 2021	17 Nov 2020	16 May 2021	18 Nov 2020
GWQR1	SE213672.005	LB213610	17 Nov 2020	17 Nov 2020	16 May 2021	17 Nov 2020	16 May 2021	18 Nov 2020
TRH (Total Recoverable	Hydrocarbons) in Water						Method: I	ME-(AU)-[ENV]AN403
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M-1	SE213672.001	LB213633	17 Nov 2020	17 Nov 2020	24 Nov 2020	18 Nov 2020	28 Dec 2020	19 Nov 2020
BH202M-1	SE213672.002	LB213633	17 Nov 2020	17 Nov 2020	24 Nov 2020	18 Nov 2020	28 Dec 2020	19 Nov 2020
BH205M-1	SE213672.003	LB213633	17 Nov 2020	17 Nov 2020	24 Nov 2020	18 Nov 2020	28 Dec 2020	19 Nov 2020
BH200_GWQD1	SE213672.004	LB213633	17 Nov 2020	17 Nov 2020	24 Nov 2020	18 Nov 2020	28 Dec 2020	19 Nov 2020
GWQR1	SE213672.005	LB213633	17 Nov 2020	17 Nov 2020	24 Nov 2020	18 Nov 2020	28 Dec 2020	19 Nov 2020
VOCs in Water							Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M-1	SE213672.001	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
BH202M-1	SE213672.002	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
BH205M-1	SE213672.003	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
BH200_GWQD1	SE213672.004	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
GWQR1	SE213672.005	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
GWQTS1	SE213672.006	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
GWQTB1	SE213672.007	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
Volatile Petroleum Hydro	carbons in Water						Method: I	ME-(AU)-[ENV]AN433
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH201M-1	SE213672.001	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
BH202M-1	SE213672.002	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
BH205M-1	SE213672.003	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
BH200_GWQD1	SE213672.004	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
GWQR1	SE213672.005	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
GWQTS1	SE213672.006	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020
GWQTB1	SE213672.007	LB213621	17 Nov 2020	17 Nov 2020	24 Nov 2020	17 Nov 2020	27 Dec 2020	18 Nov 2020

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME-(AU)-[ENV]AN420

Method: ME-(AU)-[ENV]AN433

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH201M-1	SE213672.001	%	40 - 130%	60
	BH202M-1	SE213672.002	%	40 - 130%	70
	BH205M-1	SE213672.003	%	40 - 130%	50
d14-p-terphenyl (Surrogate)	BH201M-1	SE213672.001	%	40 - 130%	88
	BH202M-1	SE213672.002	%	40 - 130%	98
	BH205M-1	SE213672.003	%	40 - 130%	64
d5-nitrobenzene (Surrogate)	BH201M-1	SE213672.001	%	40 - 130%	68
	BH202M-1	SE213672.002	%	40 - 130%	74
	BH205M-1	SE213672.003	%	40 - 130%	54

VOCs	in	Water	

					· · · · ·
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH201M-1	SE213672.001	%	40 - 130%	106
	BH202M-1	SE213672.002	%	40 - 130%	106
	BH205M-1	SE213672.003	%	40 - 130%	105
	BH200_GWQD1	SE213672.004	%	40 - 130%	104
	GWQR1	SE213672.005	%	40 - 130%	105
	GWQTS1	SE213672.006	%	40 - 130%	99
	GWQTB1	SE213672.007	%	40 - 130%	104
d4-1,2-dichloroethane (Surrogate)	BH201M-1	SE213672.001	%	40 - 130%	100
	BH202M-1	SE213672.002	%	40 - 130%	97
	BH205M-1	SE213672.003	%	40 - 130%	98
	BH200_GWQD1	SE213672.004	%	40 - 130%	98
	GWQR1	SE213672.005	%	40 - 130%	97
	GWQTS1	SE213672.006	%	40 - 130%	102
	GWQTB1	SE213672.007	%	40 - 130%	97
d8-toluene (Surrogate)	BH201M-1	SE213672.001	%	40 - 130%	95
	BH202M-1	SE213672.002	%	40 - 130%	98
	BH205M-1	SE213672.003	%	40 - 130%	95
	BH200_GWQD1	SE213672.004	%	40 - 130%	97
	GWQR1	SE213672.005	%	40 - 130%	97
	GWQTS1	SE213672.006	%	40 - 130%	101
	GWQTB1	SE213672.007	%	40 - 130%	96

Volatile Petroleum Hydrocarbons in Water

Volatile Petroleum Hydrocarbons in Water				Method: M	othod: ME-(AU)-[ENV]AN433		
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %		
Bromofluorobenzene (Surrogate)	BH201M-1	SE213672.001	%	40 - 130%	106		
	BH202M-1	SE213672.002	%	40 - 130%	106		
	BH205M-1	SE213672.003	%	40 - 130%	105		
	BH200_GWQD1	SE213672.004	%	40 - 130%	104		
	GWQR1	SE213672.005	%	40 - 130%	105		
d4-1,2-dichloroethane (Surrogate)	BH201M-1	SE213672.001	%	60 - 130%	100		
	BH202M-1	SE213672.002	%	60 - 130%	97		
	BH205M-1	SE213672.003	%	60 - 130%	98		
	BH200_GWQD1	SE213672.004	%	60 - 130%	98		
	GWQR1	SE213672.005	%	60 - 130%	97		
d8-toluene (Surrogate)	BH201M-1	SE213672.001	%	40 - 130%	95		
	BH202M-1	SE213672.002	%	40 - 130%	98		
	BH205M-1	SE213672.003	%	40 - 130%	95		
	BH200_GWQD1	SE213672.004	%	40 - 130%	97		
	GWQR1	SE213672.005	%	40 - 130%	97		

Method: ME-(AU)-[ENV]AN420

<0.01

mg/L

µg/L

µg/L

5

0.01

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Total Phenols

Chloroethane

Trichlorofluoromethane

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)				
Sample Number	Parameter	Units	LOR	Result
LB213636.001	Mercury	mg/L	0.0001	<0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Sample Number	Parameter	Units	LOR	Result
LB213633.001	Naphthalene	µg/L	0.1	<0.1
	2-methylnaphthalene	µg/L	0.1	<0.1
	1-methylnaphthalene	µg/L	0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	μg/L	0.1	<0.1
	Fluorene	μg/L	0.1	<0.1
	Phenanthrene	μg/L	0.1	<0.1
	Anthracene	μg/L	0.1	<0.1
	Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(a)pyrene	μg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1
	Dibenzo(ah)anthracene	µg/L	0.1	<0.1
	Benzo(ghi)perylene	µg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	62
	2-fluorobiphenyl (Surrogate)	%	-	62
	d14-p-terphenyl (Surrogate)	%	-	80
otal Phenolics in Water			Meth	od: ME-(AU)-[ENV]AN
Sample Number	Parameter	Units	LOR	Result

O a martial Nicorala m		Devenuester	11-4		Desult
Sample Number		Parameter	Units	LOR	Result
LB213610.001		Aluminium, Al	μg/L	5	<5
		Arsenic, As	μg/L	1	<1
		Cadmium, Cd	μg/L	0.1	<0.1
		Chromium, Cr	μg/L	1	<1
		Copper, Cu	μg/L	1	<1
		Lead, Pb	μg/L	1	<1
		Nickel, Ni	μg/L	1	<1
		Zinc, Zn	µg/L	5	<5
RH (Total Recoverat	ble Hydrocarbons) in Water			Meth	od: ME-(AU)-[ENV]AI
Sample Number		Parameter	Units	LOR	Result
LB213633.001		TRH C10-C14	μg/L	50	<50
		TRH C15-C28	μg/L	200	<200
		TRH C29-C36	μg/L	200	<200
		TRH C37-C40	µg/L	200	<200
OCs in Water				Meth	od: ME-(AU)-[ENV]AI
Sample Number		Parameter	Units	LOR	Result
LB213621.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5
		1,2-dichloropropane	μg/L	0.5	<0.5
		cis-1,3-dichloropropene	μg/L	0.5	<0.5
		trans-1,3-dichloropropene	μg/L	0.5	<0.5
		1,2-dibromoethane (EDB)	µg/L	0.5	<0.5
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5
		Chloromethane	µg/L	5	<5
		Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3
		Bromomethane	μg/L	10	<10

LB213627.001

<5

<1

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOCs in Water (continu	ied)			Meth	od: ME-(AU)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result
LB213621.001	Halogenated Aliphatics	lodomethane	µg/L	5	<5
	<u> </u>	1,1-dichloroethene	μg/L	0.5	<0.5
		Dichloromethane (Methylene chloride)	μg/L	5	<5
		Allyl chloride	μg/L	2	<2
		trans-1,2-dichloroethene	μg/L	0.5	<0.5
		1,1-dichloroethane	μg/L	0.5	<0.5
				0.5	<0.5
		cis-1,2-dichloroethene	μg/L		
		Bromochloromethane	μg/L	0.5	<0.5
		1,2-dichloroethane	μg/L	0.5	<0.5
		1,1,1-trichloroethane	μg/L	0.5	<0.5
		1,1-dichloropropene	µg/L	0.5	<0.5
		Carbon tetrachloride	μg/L	0.5	<0.5
		Dibromomethane	μg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane	μg/L	0.5	<0.5
		1,3-dichloropropane	μg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5
		1,1,1,2-tetrachloroethane	µg/L	0.5	<0.5
		cis-1,4-dichloro-2-butene	µg/L	1	<1
		1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5
		1,2,3-trichloropropane	μg/L	0.5	<0.5
		trans-1,4-dichloro-2-butene	μg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
		Hexachlorobutadiene		0.5	<0.5
			μg/L		
	Halogenated Aromatics	Chlorobenzene	μg/L	0.5	<0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	µg/L	0.5	<0.5
		4-chlorotoluene	µg/L	0.5	<0.5
		1,3-dichlorobenzene	μg/L	0.5	<0.5
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1,2-dichlorobenzene	μg/L	0.5	<0.5
		1,2,4-trichlorobenzene	μg/L	0.5	<0.5
		1,2,3-trichlorobenzene	μg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
		Ethylbenzene	µg/L	0.5	<0.5
		m/p-xylene	μg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
		Styrene (Vinyl benzene)	μg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	μg/L	0.5	<0.5
		n-propylbenzene	μg/L	0.5	<0.5
				0.5	<0.5
		1,3,5-trimethylbenzene	μg/L		
		tert-butylbenzene	μg/L	0.5	<0.5
		1,2,4-trimethylbenzene	μg/L	0.5	<0.5
		sec-butylbenzene	μg/L	0.5	<0.5
		p-isopropyltoluene	μg/L	0.5	<0.5
		n-butylbenzene	μg/L	0.5	<0.5
	Nitrogenous Compounds	Acrylonitrile	μg/L	0.5	<0.5
	Oxygenated Compounds	Acetone (2-propanone)	μg/L	10	<10
		MtBE (Methyl-tert-butyl ether)	μg/L	2	<1
		Vinyl acetate	μg/L	10	<10
		MEK (2-butanone)	μg/L	10	<10
		MIBK (4-methyl-2-pentanone)	µg/L	5	<5
		2-hexanone (MBK)	μg/L	5	<5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Sulphonated	Carbon disulfide	μg/L	2	<2
	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/τ %	-	96
	ourrogatos	d8-toluene (Surrogate)	%	-	95
	Trib al ana shi a ra a	Bromofluorobenzene (Surrogate)	%	-	102
	Trihalomethanes	Bromofluorobenzene (Surrogate) Chloroform (THM) Bromodichloromethane (THM)	%µg/Lµg/L	- 0.5 0.5	<pre>102 <0.5 <0.5</pre>

SE213672 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN433 VOCs in Water (continued) LOR Result Sample Number Units Parameter LB213621.001 Trihalomethanes Dibromochloromethane (THM) µg/L 0.5 <0.5 Bromoform (THM) µg/L 0.5 < 0.5 Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units LOR Result LB213621.001 TRH C6-C9 µg/L 40 <40 Surrogates d4-1,2-dichloroethane (Surrogate) % 96 d8-toluene (Surrogate) % 95 -Bromofluorobenzene (Surrogate) 102 %

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN31							erth)/AN312	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213677.005	LB213636.013	Mercury	µg/L	0.0001	0.00096	0.0014	200	37

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213672.002	LB213633.028		Naphthalene	µg/L	0.1	<0.1	0.04	200	0
			2-methylnaphthalene	µg/L	0.1	<0.1	0	200	0
			1-methylnaphthalene	µg/L	0.1	0.2	0.12	99	34
			Acenaphthylene	µg/L	0.1	<0.1	0	200	0
			Acenaphthene	µg/L	0.1	0.9	0.71	43	23
			Fluorene	µg/L	0.1	0.3	0.24	67	22
			Phenanthrene	μg/L	0.1	0.1	0.09	125	18
			Anthracene	μg/L	0.1	<0.1	0.01	200	0
			Fluoranthene	μg/L	0.1	<0.1	0.03	200	0
			Pyrene	µg/L	0.1	<0.1	0.03	200	0
			Benzo(a)anthracene	µg/L	0.1	<0.1	0	200	0
			Chrysene	µg/L	0.1	<0.1	0	200	0
			Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	0	200	0
			Benzo(k)fluoranthene	µg/L	0.1	<0.1	0	200	0
			Benzo(a)pyrene	µg/L	0.1	<0.1	0	200	0
			Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	0	200	0
			Dibenzo(ah)anthracene	μg/L	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	μg/L	0.1	<0.1	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	μg/L	-	0.4	0.36	30	3
		-	2-fluorobiphenyl (Surrogate)	μg/L	-	0.4	0.33	30	6
			d14-p-terphenyl (Surrogate)	μg/L	-	0.5	0.49	30	0
tal Phenolics in	Water			· · ·			Meth	od: ME-(AU)-	ENVJA
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate		RPD '

SE213673.001 LB213627.013 Total Phenols mg/L	0.01	0.00473	0.00414	200	0
--	------	---------	---------	-----	---

Trace Metals (Diss	olved) in Water by IC	PMS					Meth	od: ME-(AU)-	[ENV]AN318
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213672.005	LB213610.011		Arsenic, As	µg/L	1	<1	<1	200	0
			Cadmium, Cd	μg/L	0.1	<0.1	<0.1	200	0
			Chromium, Cr	µg/L	1	<1	<1	200	0
			Copper, Cu	μg/L	1	<1	<1	200	0
			Lead, Pb	μg/L	1	<1	<1	200	0
			Nickel, Ni	μg/L	1	<1	<1	200	0
			Zinc, Zn	μg/L	5	<5	<5	200	0
TRH (Total Recove	erable Hydrocarbons) in Water					Meth	od: ME-(AU)-	ENVJAN403
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213672.002	LB213633.028		TRH C10-C14	µg/L	50	<50	0	200	0
			TRH C15-C28	µg/L	200	<200	0	200	0
			TRH C29-C36	µg/L	200	<200	0	200	0
			TRH C37-C40	µg/L	200	<200	0	200	0
			TRH C10-C40	µg/L	320	<320	0	200	0
		TRH F Bands	TRH >C10-C16	µg/L	60	<60	0	200	0
			TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	0	200	0
			TRH >C16-C34 (F3)	µg/L	500	<500	0	200	0
			TRH >C34-C40 (F4)	µg/L	500	<500	0	200	0
VOCs in Water							Meth	od: ME-(AU)-	[ENV]AN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213550.003	LB213621.028	Fumigants	2,2-dichloropropane	μg/L	0.5	0	0	200	0
			1,2-dichloropropane	μg/L	0.5	0.0225831982	0	200	0
			cis-1,3-dichloropropene	μg/L	0.5	0	0	200	0
			trans-1,3-dichloropropene	µg/L	0.5	0	0	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water (continued)

Method: ME-(AU)-[ENV]AN433

	Duplicate		Parameter	Units	LOR	Original D	uplicate (Criteria %	RPD
213550.003	LB213621.028	Fumigants	1,2-dibromoethane (EDB)	µg/L	0.5	0	0	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	µg/L	5	0.2280292993	0	200	0
		Aliphatics	Chloromethane	μg/L	5	0	0	200	0
			Vinyl chloride (Chloroethene)	μg/L	0.3	0.1094914545	0	200	0
			Bromomethane		10	0.05614599780.3		200	0
				μg/L					
			Chloroethane	μg/L	5	0.2683791899	0	200	0
			Trichlorofluoromethane	μg/L	1	0	0	200	0
			lodomethane	μg/L	5	0.0604728763	0	200	0
			1,1-dichloroethene	μg/L	0.5	0.0055935625	0	200	0
			Dichloromethane (Methylene chloride)	μg/L	5	0.12230168550.0	246045428	200	0
			Allyl chloride	µg/L	2	0	Ō	200	0
			trans-1,2-dichloroethene	µg/L	0.5	0.0107225327	0	200	0
			1,1-dichloroethane	µg/L	0.5	0	0	200	0
			cis-1,2-dichloroethene	μg/L	0.5	0.1529098749	0	200	0
			Bromochloromethane	μg/L	0.5	0.0007212106	0	200	0
			1,2-dichloroethane	µg/L	0.5	0.0376675051	0	200	0
			1,1,1-trichloroethane	μg/L	0.5	0	0	200	0
			1,1-dichloropropene	μg/L	0.5	0	0	200	0
			Carbon tetrachloride	μg/L	0.5	0 0.0	434641675	200	C
			Dibromomethane	µg/L	0.5	0	0	200	C
			Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	0.0161596385	0	200	(
			1,1,2-trichloroethane	μg/L	0.5	0	0	200	
			1,3-dichloropropane	μg/L	0.5	0	0	200	(
			Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	0.0023028599	0	200	(
			1,1,1,2-tetrachloroethane	µg/L	0.5	0	0	200	(
			cis-1,4-dichloro-2-butene	μg/L	1	0	0	200	(
			1,1,2,2-tetrachloroethane	µg/L	0.5	0 0.0	139958119	200	(
			1,2,3-trichloropropane	µg/L	0.5	0	0	200	(
			trans-1,4-dichloro-2-butene	μg/L	1	0	0	200	(
			1,2-dibromo-3-chloropropane	μg/L	0.5	0	0	200	
			Hexachlorobutadiene	μg/L	0.5	0.0032982978	0	200	(
		Halogenated	Chlorobenzene	µg/L	0.5	6.48339714665.4		38	1
		Aromatics	Bromobenzene	µg/L	0.5	0	0	200	(
			2-chlorotoluene	μg/L	0.5	0.0208504932	0	200	
			4-chlorotoluene	μg/L	0.5	0	0	200	(
			1,3-dichlorobenzene	µg/L	0.5	0.0384217871	Ō	200	(
			1,4-dichlorobenzene	µg/L	0.3	6.05111318485.7	384823338	35	
			1,2-dichlorobenzene	μg/L	0.5		898539813	77	3
								200	
			1,2,4-trichlorobenzene	μg/L	0.5	0.0193940891	0		(
			1,2,3-trichlorobenzene	µg/L	0.5	0.00379726290.0	560277944	200	
		Monocyclic	Benzene	µg/L	0.5	1.11381482330.9	769432056	78	1
		Aromatic	Toluene	μg/L	0.5	0.0945541812	0	200	(
			Ethylbenzene	µg/L	0.5	0.0146400789	0	200	(
			m/p-xylene	μg/L	1	0.1795762293	0	200	(
			o-xylene	μg/L	0.5	0.2492431724	0	200	(
			Styrene (Vinyl benzene)	μg/L			0	200	
			Styrene (VIIIyi Denzene)		0.5	0			
			· · · · · · · · · · · · · · · · · · ·		~ ~		0	200	(
			Isopropylbenzene (Cumene)	µg/L	0.5	0			
			n-propylbenzene	μg/L μg/L	0.5	0.17099552090.8	494014143	128	
				µg/L		0.17099552090.8 0.0249987582		128 200	(
			n-propylbenzene	μg/L μg/L	0.5	0.17099552090.8	494014143		(
			n-propylbenzene 1,3,5-trimethylbenzene	µg/L µg/L µg/L	0.5 0.5	0.17099552090.8 0.0249987582	494014143 0	200	(
			n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene	µg/L µg/L µg/L µg/L µg/L	0.5 0.5 0.5 0.5	0.17099552090.8 0.0249987582 0.1566734290	494014143 0 0 0	200 200 200	(
			n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene	µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 0.5 0.5 0.5	0.17099552090.8 0.0249987582 0.1566734290 0.1023553089 0.21865588480.3	494014143 0 0 0 430238788	200 200 200 200	(
			n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene p-isopropyltoluene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 0.5 0.5 0.5 0.5	0.17099552090.8 0.0249987582 0.1566734290 0.1023553089 0.21865588480.3 0.1612136968	494014143 0 0 0 430238788 0	200 200 200 200 200	
			n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene p-isopropyltoluene n-butylbenzene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.17099552090.8 0.0249987582 0.1566734290 0.1023553089 0.21865588480.3 0.1612136968 0	494014143 0 0 0 430238788 0 0	200 200 200 200 200 200 200	
		Nitrogenous	n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene p-isopropyltoluene n-butylbenzene Acrylonitrile	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.17099552090.8 0.0249987582 0.1566734290 0.1023553089 0.21865588480.3 0.1612136968 0 0 0	494014143 0 0 0 430238788 0 0 0 0	200 200 200 200 200 200 200 200	
		Nitrogenous Oxygenated	n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene p-isopropyltoluene n-butylbenzene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.17099552090.8 0.0249987582 0.1566734290 0.1023553089 0.21865588480.3 0.1612136968 0	494014143 0 0 0 430238788 0 0 0 0	200 200 200 200 200 200	
			n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene p-isopropyltoluene n-butylbenzene Acrylonitrile	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.17099552090.8 0.0249987582 0.1566734290 0.1023553089 0.21865588480.3 0.1612136968 0 0 0	494014143 0 0 0 430238788 0 0 0 0	200 200 200 200 200 200 200 200	
		Oxygenated	n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene p-isopropyltoluene n-butylbenzene Acrylonitrile Acetone (2-propanone)	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 10	0.17099552090.8 0.0249987582 0.1566734290 0.1023553089 0.21865588480.3 0.1612136968 0 0 1.98954693651.1	494014143 0 0 0 430238788 0 0 0 0 602286425	200 200 200 200 200 200 200 200 200	
		Oxygenated	n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene p-isopropyltoluene n-butylbenzene Acrylonitrile Acetone (2-propanone) MtBE (Methyl-tert-butyl ether) Vinyl acetate	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 10 2 10	0.17099552090.8 0.0249987582 0.1566734290 0.1023553089 0.21865588480.3 0.1612136968 0 0 1.98954693651.1 0.0877846227 0	494014143 0 0 430238788 0 0 0 6002286425 0 0 0	200 200 200 200 200 200 200 200 200 200	
		Oxygenated	n-propylbenzene 1,3,5-trimethylbenzene tert-butylbenzene 1,2,4-trimethylbenzene sec-butylbenzene p-isopropyltoluene n-butylbenzene Acrylonitrile Acetone (2-propanone) MtBE (Methyl-tert-butyl ether)	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 10 2	0.17099552090.8 0.0249987582 0.1566734290 0.1023553089 0.21865588480.3 0.1612136968 0 0 1.98954693651.1 0.0877846227	494014143 0 0 430238788 0 0 0 602286425 0	200 200 200 200 200 200 200 200 200 200	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOCs in Water (continued)

Method: ME-(AU)-[ENV]AN433

Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate C	riteria %	RPD
E213550.003	LB213621.028	Polycyclic	Naphthalene	µg/L	0.5	0.245682319	00.5440165414	157	8
		Sulphonated	Carbon disulfide	µg/L	2	0.011513555	8 0	200	0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	9.892881506	310.1883156668	30	3
			d8-toluene (Surrogate)	µg/L	-	9.734870481	410.7140157771	30	10
			Bromofluorobenzene (Surrogate)	μg/L	_		30.2085276359	30	3
		Trihalomethan	Chloroform (THM)	μg/L	0.5	0.025736958		200	0
		es	Bromodichloromethane (THM)	μg/L	0.5	0	0	200	0
		63				0	0		0
			Dibromochloromethane (THM)	µg/L	0.5			200	
			Bromoform (THM)	µg/L	0.5	0	0	200	0
213672.001	LB213621.029	Fumigants	2,2-dichloropropane	µg/L	0.5	<0.5	0	200	0
			1,2-dichloropropane	µg/L	0.5	<0.5	0	200	0
			cis-1,3-dichloropropene	µg/L	0.5	<0.5	0	200	0
			trans-1,3-dichloropropene	µg/L	0.5	<0.5	0	200	0
			1,2-dibromoethane (EDB)	µg/L	0.5	<0.5	0	200	0
		Halogenated	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	0	200	0
		Aliphatics	Chloromethane	µg/L	5	<5	0	200	0
			Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	0	200	0
			Bromomethane	μg/L	10	<10	0.2231407639	200	0
			Chloroethane	μg/L	5	<5	0	200	0
			Trichlorofluoromethane	μg/L	1	<1	0	200	0
					5	<5	0	200	C
			lodomethane	μg/L					
			1,1-dichloroethene	µg/L	0.5	<0.5	0	200	(
			Dichloromethane (Methylene chloride)	µg/L	5	<5	0	200	(
			Allyl chloride	µg/L	2	<2	0	200	(
			trans-1,2-dichloroethene	µg/L	0.5	<0.5	0	200	(
			1,1-dichloroethane	µg/L	0.5	<0.5	0	200	
			cis-1,2-dichloroethene	µg/L	0.5	<0.5	0	200	
			Bromochloromethane	µg/L	0.5	<0.5	0	200	
			1,2-dichloroethane	µg/L	0.5	<0.5	0	200	
			1,1,1-trichloroethane	µg/L	0.5	<0.5	0	200	
			1,1-dichloropropene	µg/L	0.5	<0.5	0	200	
			Carbon tetrachloride	µg/L	0.5	<0.5	0.0444894402	200	
			Dibromomethane	μg/L	0.5	<0.5	0	200	
			Trichloroethene (Trichloroethylene,TCE)		0.5	<0.5	0	200	
				μg/L					
			1,1,2-trichloroethane	µg/L	0.5	<0.5	0	200	(
			1,3-dichloropropane	µg/L	0.5	<0.5	0	200	(
			Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	<0.5	0	200	(
			1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	0	200	
			cis-1,4-dichloro-2-butene	µg/L	1	<1	0	200	
			1,1,2,2-tetrachloroethane	µg/L	0.5	<0.5	0	200	
			1,2,3-trichloropropane	µg/L	0.5	<0.5	0	200	
			trans-1,4-dichloro-2-butene	µg/L	1	<1	0	200	
			1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5	0	200	
			Hexachlorobutadiene	μg/L	0.5	<0.5	0	200	(
		Halogenated	Chlorobenzene	μg/L	0.5	<0.5	0	200	
		Aromatics	Bromobenzene	μg/L	0.5	<0.5	0	200	
		nonducs							
			2-chlorotoluene	μg/L	0.5	<0.5	0	200	(
			4-chlorotoluene	μg/L	0.5	<0.5	0	200	
				110/1	0.5	<0.5	0	200	
			1,3-dichlorobenzene	μg/L			-		
			1,4-dichlorobenzene	μg/L	0.3	<0.3	0	200	
						<0.3 <0.5	0	200 200	
			1,4-dichlorobenzene	μg/L	0.3				(
			1,4-dichlorobenzene 1,2-dichlorobenzene	μg/L μg/L	0.3 0.5	<0.5	0	200	(
		Monocyclic	1,4-dichlorobenzene 1,2-dichlorobenzene 1,2,4-trichlorobenzene	μg/L μg/L μg/L	0.3 0.5 0.5	<0.5 <0.5	0	200 200	(
		Monocyclic Aromatic	1,4-dichlorobenzene 1,2-dichlorobenzene 1,2,4-trichlorobenzene 1,2,3-trichlorobenzene	µg/L µg/L µg/L µg/L µg/L	0.3 0.5 0.5 0.5	<0.5 <0.5 <0.5	0 0 0.0431782083	200 200 200	(
			1.4-dichlorobenzene 1.2-dichlorobenzene 1.2.4-trichlorobenzene 1.2.3-trichlorobenzene Benzene Toluene	µg/L µg/L µg/L µg/L µg/L µg/L	0.3 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5	0 0 0.0431782083 0 0.0981590549	200 200 200 200 200	
			1.4-dichlorobenzene 1.2-dichlorobenzene 1.2.4-trichlorobenzene 1.2.3-trichlorobenzene Benzene Toluene Ethylbenzene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.3 0.5 0.5 0.5 0.5 0.5 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.7	0 0 0.0431782083 0 0.0981590549 0.2980864589	200 200 200 200 200 131	(((((3
			1.4-dichlorobenzene 1.2-dichlorobenzene 1.2.4-trichlorobenzene 1.2.3-trichlorobenzene Benzene Toluene Ethylbenzene m/p-xylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1	<0.5 <0.5 <0.5 <0.5 <0.5 0.7 1	0 0.0431782083 0 0.0981590549 0.2980864589 0.5857493706	200 200 200 200 200 131 136	(((((((((((((((((())))))
			1,4-dichlorobenzene 1,2-dichlorobenzene 1,2,4-trichlorobenzene 1,2,3-trichlorobenzene Benzene Toluene Ethylbenzene m/p-xylene o-xylene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5	<0.5 <0.5 <0.5 <0.5 <0.5 0.7 1 0.5	0 0.0431782083 0 0.0981590549 0.2980864589 0.5857493706 0.1820755524	200 200 200 200 200 131 136 168	() () () () () () () () () () () () () (
			1.4-dichlorobenzene 1.2-dichlorobenzene 1.2.4-trichlorobenzene 1.2.3-trichlorobenzene Benzene Toluene Ethylbenzene m/p-xylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1	<0.5 <0.5 <0.5 <0.5 <0.5 0.7 1	0 0.0431782083 0 0.0981590549 0.2980864589 0.5857493706	200 200 200 200 200 131 136	(((((((((((((((((())))))

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE213672.001	LB213621.029	Monocyclic	1,3,5-trimethylbenzene	µg/L	0.5	<0.5	0	200	0
		Aromatic	tert-butylbenzene	μg/L	0.5	<0.5	0	200	0
			1,2,4-trimethylbenzene	μg/L	0.5	<0.5	0	200	0
			sec-butylbenzene	μg/L	0.5	<0.5	0	200	0
			p-isopropyltoluene	μg/L	0.5	<0.5	0	200	0
			n-butylbenzene	μg/L	0.5	<0.5	0	200	0
		Nitrogenous	Acrylonitrile	μg/L	0.5	<0.5	0	200	0
		Oxygenated	Acetone (2-propanone)	μg/L	10	<10	1.8369142069	200	0
		Compounds	MtBE (Methyl-tert-butyl ether)	μg/L	2	<2	0	200	0
			Vinyl acetate	μg/L	10	<10	0	200	0
			MEK (2-butanone)	μg/L	10	<10	0	200	0
			MIBK (4-methyl-2-pentanone)	μg/L	5	36	33.0559	45	7
			2-hexanone (MBK)	μg/L	5	<5	0	200	0
		Polycyclic	Naphthalene	μg/L	0.5	0.6	0.8577264735	99	36
		Sulphonated	Carbon disulfide	μg/L	2	<2	0.3300192698		0
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.0	10.1597676902		1
			d8-toluene (Surrogate)	μg/L	_	9.5	10.3358283329		9
			Bromofluorobenzene (Surrogate)	μg/L	-	10.6	10.8652308037		3
		Trihalomethan	Chloroform (THM)	μg/L	0.5	<0.5	0	200	0
		es	Bromodichloromethane (THM)	μg/L	0.5	<0.5	0	200	0
			Dibromochloromethane (THM)	μg/L	0.5	<0.5	0	200	0
			Bromoform (THM)	μg/L	0.5	<0.5	0	200	0
olatile Petroleum	Hydrocarbons in Wa	iter					Meth	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD '
SE213550.003	LB213621.022		TRH C6-C10	µg/L	50		4248.3134538252		0
			TRH C6-C9	μg/L	40		1612.5877557221		6
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L			5310.1883156668		3
			d8-toluene (Surrogate)	μg/L	_		1410.7140157771		10
			Bromofluorobenzene (Surrogate)	μg/L	_		330.2085276359		3
		VPH F Bands	Benzene (F0)	μg/L	0.5		330.9769432056	78	13
			TRH C6-C10 minus BTEX (F1)	μg/L	50		087.3365106196		0
SE213672.001	LB213621.023		TRH C6-C10	μg/L	50	<50	45.6938057209		0
			TRH C6-C9	μg/L	40	<40	45.3799119309		13
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	10.0	10.1597676902		1
			d8-toluene (Surrogate)	μg/L	-	9.5	10.3358283329		9
			Bromofluorobenzene (Surrogate)	μg/L	-	10.6	10.8652308037		3
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0	200	0
				P9/E	50	<50	45.6938057209		

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Method: ME	-(ALI)-	ENV	AN420
MOUTOU. MIL	(~I11720

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB213633.002	Naphthalene	μg/L	0.1	27	40	60 - 140	67
	Acenaphthylene	μg/L	0.1	31	40	60 - 140	78
	Acenaphthene	μg/L	0.1	29	40	60 - 140	72
	Phenanthrene	μg/L	0.1	31	40	60 - 140	78
	Anthracene	μg/L	0.1	32	40	60 - 140	80
	Fluoranthene	μg/L	0.1	33	40	60 - 140	82
	Pyrene	μg/L	0.1	32	40	60 - 140	80
	Benzo(a)pyrene	μg/L	0.1	30	40	60 - 140	76
Surrogates	d5-nitrobenzene (Surrogate)	μg/L	-	0.3	0.5	40 - 130	62
	2-fluorobiphenyl (Surrogate)	μg/L	-	0.3	0.5	40 - 130	64
	d14-p-terphenyl (Surrogate)	μg/L	-	0.4	0.5	40 - 130	72
Total Phenolics in Water					N	lethod: ME-(Al	J)-[ENV]AN289
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB213627.002	Total Phenols	mg/L	0.01	0.22	0.25	80 - 120	88

Trace Metals	(Dissolved)) in Water by	Y ICPMS

o-xylene

d4-1,2-dichloroethane (Surrogate)

d8-toluene (Surrogate)

Surrogates

Theorem Constants (Disc	solved) in water by						noulou. me-(ri	
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB213610.002		Aluminium, Al	µg/L	5	19	20	80 - 120	96
		Arsenic, As	µg/L	1	17	20	80 - 120	87
		Cadmium, Cd	µg/L	0.1	20	20	80 - 120	99
		Chromium, Cr	µg/L	1	20	20	80 - 120	101
		Copper, Cu	µg/L	1	20	20	80 - 120	101
		Lead, Pb	µg/L	1	18	20	80 - 120	91
		Nickel, Ni	µg/L	1	19	20	80 - 120	97
		Zinc, Zn	µg/L	5	21	20	80 - 120	104
TRH (Total Recov	erable Hydrocarbo	ns) in Water				I	Method: ME-(A	U)-[ENV]AN40
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB213633.002		TRH C10-C14	µg/L	50	1300	1200	60 - 140	108
		TRH C15-C28	µg/L	200	1400	1200	60 - 140	118
		TRH C29-C36	µg/L	200	1300	1200	60 - 140	105
	TRH F Bands	TRH >C10-C16	µg/L	60	1400	1200	60 - 140	114
		TRH >C16-C34 (F3)	µg/L	500	1400	1200	60 - 140	117
		TRH >C34-C40 (F4)	µg/L	500	590	600	60 - 140	98
VOCs in Water						I	Method: ME-(A	U)-[ENV]AN43
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB213621.002	Halogenated	1,1-dichloroethene	µg/L	0.5	54	45.45	60 - 140	119
	Aliphatics	1,2-dichloroethane	µg/L	0.5	56	45.45	60 - 140	123
		Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	54	45.45	60 - 140	118
	Halogenated	Chlorobenzene	µg/L	0.5	52	45.45	60 - 140	114
	Monocyclic	Benzene	µg/L	0.5	51	45.45	60 - 140	112
	Aromatic	Toluene	μg/L	0.5	48	45.45	60 - 140	107
		Ethylbenzene	µg/L	0.5	47	45.45	60 - 140	104
		m/p-xylene	µg/L	1	95	90.9	60 - 140	104

		Bromofluorobenzene (Surrogate)	µg/L	-	9.9	10	70 - 130	99
	Trihalomethan	Chloroform (THM)	µg/L	0.5	57	45.45	60 - 140	124
Volatile Petroleum I	Hydrocarbons in V	Vater				N	lethod: ME-(A	U)-[ENV]AN433
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB213621.002		TRH C6-C10	µg/L	50	930	946.63	60 - 140	98
		TRH C6-C9	µg/L	40	800	818.71	60 - 140	97
	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L	-	10.3	10	60 - 140	103
		d8-toluene (Surrogate)	µg/L	-	10.4	10	70 - 130	104
		Bromofluorobenzene (Surrogate)	µg/L	-	9.9	10	70 - 130	99
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	640	639.67	60 - 140	100

0.5

-

µg/L

µg/L

µg/L

47

10.3

10.4

45.45

10

10

60 - 140

60 - 140

70 - 130

104

103

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN						(Perth)/AN312		
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE213649.007	LB213636.004	Mercury	mg/L	0.0001	0.0019	0.0088	0.008	96

Total Phenolics in Water

Total Phenolics in	· ·					Met	hod: ME-(Al	J)-[ENV]AN289
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE213672.001	LB213627.004	Total Phenols	mg/L	0.01	0.25	0.01	0.25	96

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE213649.007	LB213610.004	Arsenic, As	µg/L	1	18	0.002	20	92
		Cadmium, Cd	µg/L	0.1	21	0.002	20	107
		Chromium, Cr	µg/L	1	22	-0.019	20	108
		Copper, Cu	µg/L	1	22	-0.115	20	110
		Lead, Pb	μg/L	1	19	0.013	20	94
		Nickel, Ni	μg/L	1	21	0.035	20	105
		Zinc, Zn	μg/L	5	24	1.566	20	115

QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
E213665.001	LB213621.030	Fumigants			0.5	<0.5	<0.5	- Spike	Recovery
SE213005.001	LB213021.030	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5	<0.5	-	-
			1,2-dichloropropane	μg/L		<0.5	<0.5	-	
			cis-1,3-dichloropropene	μg/L	0.5	<0.5	<0.5	-	
			trans-1,3-dichloropropene	µg/L	0.5	· · · · · · · · · · · · · · · · · · ·			-
			1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	<0.5	-	-
		Halogenated	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	<5	-	-
		Aliphatics	Chloromethane	µg/L	5	<5	<5	-	-
			Vinyl chloride (Chloroethene)	μg/L	0.3	0.3	<0.3	-	-
			Bromomethane	μg/L	10	<10	<10	-	-
			Chloroethane	µg/L	5	<5	<5	-	-
			Trichlorofluoromethane	μg/L	1	<1	<1	-	-
			Iodomethane	μg/L	5	<5	<5	-	-
			1,1-dichloroethene	µg/L	0.5	41	<0.5	45.45	90
			Dichloromethane (Methylene chloride)	μg/L	5	<5	<5	-	-
			Allyl chloride	μg/L	2	<2	<2	-	-
			trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	-	-
			1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	-	-
			cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	-	-
			Bromochloromethane	μg/L	0.5	<0.5	<0.5	-	-
			1,2-dichloroethane	μg/L	0.5	44	<0.5	45.45	97
			1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	-	-
			1,1-dichloropropene	μg/L	0.5	<0.5	<0.5	-	-
			Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	-	-
			Dibromomethane	μg/L	0.5	<0.5	<0.5	-	-
			Trichloroethene (Trichloroethylene, TCE)	μg/L	0.5	41	<0.5	45.45	90
			1,1,2-trichloroethane	μg/L	0.5	<0.5	<0.5	-	-
			1,3-dichloropropane	μg/L	0.5	<0.5	<0.5	-	-
			Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5	<0.5	_	-
			1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	-	-
			cis-1,4-dichloro-2-butene	μg/L	1	<1	<1		-
			1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5	<0.5	-	
			1,2,3-trichloropropane	μg/L	0.5	<0.5	<0.5		
			trans-1,4-dichloro-2-butene	μg/L	1	<1	<1	-	
			1,2-dibromo-3-chloropropane		0.5	<0.5	<0.5	-	
			Hexachlorobutadiene	μg/L	0.5	<0.5	<0.5	-	-
		Hologopoted		μg/L		52			-
		Halogenated	Chlorobenzene	μg/L	0.5	· · · · · · · · · · · · · · · · · · ·	<0.5	45.45	114
		Aromatics	Bromobenzene	µg/L	0.5	<0.5	<0.5	-	
			2-chlorotoluene	μg/L	0.5	<0.5	<0.5	-	-
			4-chlorotoluene	μg/L	0.5	<0.5	<0.5	-	-
			1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
E213665.001	LB213621.030	Halogenated	1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	-	-
		Aromatics	1,2-dichlorobenzene	μg/L	0.5	<0.5	<0.5	-	-
			1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-
			1,2,3-trichlorobenzene	μg/L	0.5	<0.5	<0.5	-	-
		Monocyclic	Benzene	μg/L	0.5	49	<0.5	45.45	108
		Aromatic	Toluene	μg/L	0.5	49	<0.5	45.45	108
			Ethylbenzene	μg/L	0.5	47	<0.5	45.45	103
			m/p-xylene	μg/L	1	96	<1	90.9	105
			o-xylene	μg/L	0.5	47	<0.5	45.45	103
			Styrene (Vinyl benzene)	μg/L	0.5	<0.5	<0.5	-	-
			Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	-	-
			n-propylbenzene	μg/L	0.5	<0.5	<0.5	-	-
			1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	-	
			tert-butylbenzene	μg/L	0.5	<0.5	<0.5	-	
			1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	-	-
			sec-butylbenzene	µg/L	0.5	<0.5	<0.5	-	-
			p-isopropyltoluene	µg/L	0.5	<0.5	<0.5		-
			n-butylbenzene	μg/L	0.5	<0.5	<0.5		-
		Nitrogenous	Acrylonitrile	µg/L	0.5	<0.5	<0.5		-
		Oxygenated	Acetone (2-propanone)	μg/L	10	<10	<10		
		Compounds	MtBE (Methyl-tert-butyl ether)	μg/L	2	<1	<2		
		compoundo	Vinyl acetate	μg/L	10	<10	<10	_	
			MEK (2-butanone)	μg/L	10	<10	<10	_	
			MIBK (4-methyl-2-pentanone)	μg/L	5	<5	<5	_	
			2-hexanone (MBK)	μg/L	5	<5	<5	-	
		Polycyclic	Naphthalene	μg/L	0.5	<0.5	<0.5		
		Sulphonated	Carbon disulfide	μg/L	2	<2	<2		
		Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L		9.8	9.7		98
		Gunogates	d8-toluene (Surrogate)	μg/L		10.0	9.7		10
			Bromofluorobenzene (Surrogate)	μg/L		10.0	10.7		10
		Trihalometha	Chloroform (THM)	μg/L	0.5	42	<0.5	45.45	90
		nes	Bromodichloromethane (THM)	μg/L	0.5	<0.5	<0.5		
		100	Dibromochloromethane (THM)	μg/L	0.5	<0.5	<0.5		-
			Bromoform (THM)	μg/L	0.5	<0.5	<0.5		-
atile Petroleu	m Hydrocarbons in V	Vater		P9'-	0.0			hod: ME-(Al	J)-IENVI/
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
E213665.001	LB213621.024		TRH C6-C10	μg/L	50	980	<50	946.63	10

µg/L

µg/L

µg/L

µg/L

μg/L

9.8

10.0

10.0

690

-

0.5

50

9.7

9.7

10.7

<0.5

<50

-

-

639.67

Surrogates

VPH F

Bands

d4-1,2-dichloroethane (Surrogate)

Bromofluorobenzene (Surrogate)

TRH C6-C10 minus BTEX (F1)

d8-toluene (Surrogate)

Benzene (F0)

98

100

100

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

SGS Environmental Services is accredited by NATA for Chemical Testing (Reg.No.2562) and Quality System compliance to ISO/IEC 17025. The QC parameters contained within are designed to meet NEPM 1999 requirements.

Quality Control samples included in any analytical run are listed below.

Reagent/Analysis Blank (BLK) Method Blank (MB)	Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. A reagent blank is prepared and analysed with every batch of samples plus with each new batch of solvent prior to use.
Sample Matrix Spike (MS) & Matrix Spike Duplicate (MSD)	Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and <u>prior to the extraction/digestion procedure</u> . They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water may be used. A duplicate spiked sample is analysed at least every 20 samples.
Surrogate Spike (SS)	At least one but up to three surrogate compounds are added to all samples requiring analysis for organics prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Where possible they are surrogate compounds recommended by the USEPA.
Control Matrix Spike (CMS)	To ensure spike recoveries can be determined for every batch of samples a control matrix is spiked with identical concentrations of target analyte(s) and then analysed. These results allow recoveries to be determined in the event that the matrix spikes are unusable (eg. matrix spikes performed on heavily contaminated samples). These are analysed at least every 20 samples.
Internal Standard (IS)	Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Where possible they are standard compounds recommended by the USEPA.
Lab Duplicates (D)	A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.
Lab Control Standards/Samples (LCS)	Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity. Thereafter they are analysed at least every one in 20 samples plus at the end of each analytical run. This data is not reported.
Continuous Calibration Verification (CCV) or Calibration Check	A calibration check standard or CCV and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift. Calibration Standards are checked old versus new with a criteria of ±10%
Standard & Blank	

Quality Assurance Programs are listed below:

Statistical analysis of Quality Control data (SQC)	Quality control data is plotted on control charts using the APHA procedure with warning and control limits at 2 and 3 standard deviations respectively. See also QMS Procedure "Statistical Quality Control".		
Certified Reference Materials (CRM/SRM)	Certified Reference Materials and Standards are regularly analysed. These materials/standards have certified reference values for various parameters.		
Proficiency Testing	Regular proficiency test samples are analysed by our laboratories. SGS Environmental participates in a number of programs. Results and proficiency status are compiled and sent to participating laboratory post data interpretation. Failure to comply with acceptable values result in further investigations.		
Inter-laboratory & Intra- laboratory Testing	SGS Environmental Services has schedules in the Quality Systems to participate in Inter/Intra laboratory testing conducted internally and by other parties.		
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all inorganic tests.	 Failure to meet the internal acceptance criteria will result in sample batch repeats dependent upon investigation outcomes. For data to be accepted: <u>Inorganics (water samples)</u> For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab Duplicates RPD to be <15%*. Note: If client <u>field</u> duplicates do not meet this criteria it may indicate heterogeneity and shall be noted on the data reports for QC samples. Sample (and if applicable Control) Matrix Spike^{J*} Duplicate recovery RPD to be <30%. Where CRMs are used, results to be within ±2 standard deviations of the expected value. <u>Inorganics (soil samples)</u> For all inorganic analytes the Reagent & Method Blanks must be less 		
All recoveries are to be reported to 3 significant figures.	 than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab duplicate RPD to be <30%* for sample results greater than 10 times LOR. Sample Matrix Spike Duplicate (MS^{-#}/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D). Where CRMs are used, results to be within ± 2 standard deviations of the expected value. 		

	<u>Organics</u>
	 Volatile & extractable Reagent & Method Blanks must contain levels less than or equal to LOR.
	 The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]25%. Some analytes may have specific criteria.
	 Control Standards (LCS/CMS) and Certified Reference Materials (CRM) recoveries are to be within established control limits or as a default 60-140% unless compound specific limits apply.
	 Retention times are to vary by no more than 0.2 min.
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria	• At least two of three routine level soil sample Surrogate Spike (SS) recoveries are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as acceptance criterion. Any recoveries outside these limits will have comment.
All recoveries are to be reported to 3 significant figures.	 Water sample Surrogates Spike (SS) recoveries are to be within 40- 130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion. Any recoveries outside these limits will have comment.
0	 Lab Duplicates (D) must have a RPD <30%*.
	 Sample Matrix Spike Duplicate (MS^{,*}/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D).

*Only if results are at least 10 times the LOR otherwise no acceptance criteria for RPD's apply. Application of more stringent criteria shall be applied for clean water sample from water boards and any other nominated client contracts. Nominal 10xLOR criteria are dropped to 5xLOR where specified. ^AMatrix do not readily equate to definitive recovery due to inherent matrix interferences and thus do not have recovery compliance values set. As a guide inorganic recoveries should be between 70-130% and for organics 60-130%

Batch Structure Summary

An analytical batch is nominally considered as 20 samples or smaller. As a standard template the following should be **used as a guide** according to the above Quality Control Types:

1	MB	16	UNK DUP
2	STD1	17	MS
3	STD2	18	MS_DUP
4	STD3	19	UNK 11
5	LCS	20	UNK 12
6	BLK	21	UNK 13
7	UNK 1	22	UNK 14
8	UNK 2	23	UNK 15
9	UNK 3	24	UNK 16
10	UNK 4	25	UNK 17
11	UNK 5	26	UNK 18
12	UNK 6	27	UNK 19
13	UNK 7	28	UNK 20 (SS if applicable)
14	UNK 8	29	UNK_DUP
15	UNK 9	30	CCV
16	UNK 10 (SS if applicable)	31	CRM / SRM / CMS / LCS

Table QC1 - Containers, Preservation Requirements and Holding Times - Soil					
Parameter	Container	Preservation	Maximum Holding Time		
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months		
Mercury	Glass with Teflon Lid	Nil	28 days		
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days		
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days		
Phenols	Glass with Teflon Lid	4°C ¹	14 days		
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days		
Asbestos	Sealed Plastic Bag	Nil	N/A		

Table QC2 - Containers, Preservation Requirements and Holding Times - Water					
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time		
Heavy Metals	125mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months		
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months		
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass HCI / 4°C ¹		14 days		
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4ºC ¹	28 days		

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Ar	alytical Paran	neters, PQLs	and Methods - Soil
Parameter	Unit	PQL	Method Reference
	Meta	ls in Soil	
Arsenic - As ¹	mg / kg	1	USEPA 200.7
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7
Chromium - Cr ¹	mg / kg	1	USEPA 200.7
Copper - Cu ¹	mg / kg	1	USEPA 200.7
Lead - Pb ¹	mg / kg	1	USEPA 200.7
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A
Nickel - Ni ¹	mg / kg	1	USEPA 200.7
Zinc - Zn ¹	mg / kg	1	USEPA 200.7
Tota	al Petroleum Hyd	rocarbons (TP	Hs) in Soil
C_6 - C_9 fraction	mg / kg	25	USEPA 8260
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000
	BTE	X in Soil	
Benzene	mg / kg	1	USEPA 8260
Toluene	mg / kg	1	USEPA 8260
Ethylbenzene	mg / kg	1	USEPA 8260
		USEPA 8260	
o- Xylene	mg / kg	1	USEPA 8260
	Other Organic C	ontaminants i	n Soil
PAHs	mg / kg	0.05-0.2	USEPA 8270
CHCs	mg / kg	1	USEPA 8260
VOCs	mg / kg	1	USEPA 8260
SVOCs	mg / kg	1	USEPA 8260
OCPs	mg / kg	0.1	USEPA 8140, 8080
OPPs	mg / kg	0.1	USEPA 8140, 8080
PCBs	mg / kg	0.1	USEPA 8080
Phenolics	mg / kg	5	APHA 5530
	As	bestos	
Asbestos	mg / kg	Presence / Absence	AS4964-2004

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method
Heavy Metals			Chlorinated Hydrocarbons (CHCs)				
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B
Copper - Cu	μg/L	1	USEPA 200.8	1,1,2-trichloroethane	μg/L	1	USEPA 8260B
Lead - Pb	μg/L	1	USEPA 200.8	Hexachloroethane	μg/L	10	USEPA 8270D
Mercury - Hg	μg/L	0.5	USEPA 7471A	Other CHCs	μg/L	1	USEPA 8260B
Molybdenum - Mo	μg/L	1	USEPA 200.8	Volatile Orga		npound	s (VOCs)
Nickel - Ni	μg/L	1	USEPA 200.8	Aniline	μg/L	10	USEPA 8260B
Selenium - Se	μg/L	1	USEPA 200.8	2,4-dichloroaniline	μg/L	10	USEPA 8260B
Silver - Ag	μg/L	1	USEPA 200.8	3,4-dichloroaniline	μg/L	10	USEPA 8260B
Tin (inorg.) - Sn	μg/L	1	USEPA 200.8	Nitrobenzene	μg/L	50	USEPA 8260B
Nickel - Ni	μg/L	1	USEPA 200.8	2,4-dinitrotoluene	μg/L	50	USEPA 8260B
Zinc - Zn	μg/L	1	USEPA 200.8	2,4,6-trinitrotoluene	μg/L	50	USEPA 8260B
			ons (TPHs)	Phenolic Compounds			
C ₆ -C ₉ fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8041
C ₁₅ -C ₂₈ fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8041
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041
	BT	ΈX		2,4,6-trichlorophenol	μg/L	10	USEPA 8041
Benzene	μg/L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8041
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041
m- & p-Xylene	μg/L	2	USEPA 8220A	Miscella	aneous	Paramet	ters
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN
Polyciclic Are	omatic F	lydrocai	rbons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C
PAHs	μg/L	0.1	USEPA 8270	Salinity (TDS)	mg/L	1	APHA 2510
Benzo(a)pyrene	μg/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+
OrganoCl	hlorine F	Pesticide	es (OCPs)	OrganoPhosphate Pesticides (OPPs)			s (OPPs)
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141
Chlordane	μg/L	0.001	USEPA 8081	Chloropyrifos	μg/L	0.01	USEPA 8141
DDT Dialahin	μg/L	0.001	USEPA 8081	Diazinon	μg/L	0.01	USEPA 8141
Dieldrin Endosulfan	μg/L	0.001	USEPA 8081	Dimethoate Expitrathion	μg/L	0.01	USEPA 8141
	μg/L	0.001	USEPA 8081	Fenitrothion	μg/L	0.01	USEPA 8141
Endrin Heptachlor	μg/L	0.001	USEPA 8081 USEPA 8081	Malathion Parathion	μg/L	0.01	USEPA 8141 USEPA 8141
Lindane	μg/L μg/L	0.001	USEPA 8081			USEPA 8141 USEPA 8141	
Toxaphene	μg/L μg/L	0.001	USEPA 8081				
	μg/∟	0.001		Individual PCBs	μg/L	0.01	USEPA 8081

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

QC Sample Type	Method of Assessment	Acceptable Range		
	Field QC			
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \times \frac{ X_1 - X_2 }{mean (X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL) 		
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>		
_aboratory prepared Frip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%		
	Laboratory QC			
Laboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample results > 10 LOR		
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)		
Matrix Spikes _aboratory Control Samples	% Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).		
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)		
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)		
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>		

1 OBJECTIVE

This procedure will be used by the laboratory to comply with NEPM requirements for QA/QC reporting (and is typical of other regulatory requirements).

This procedure is applicable to all Environmental samples eg from Environmental Consultants. Samples from non-Environmental Consultants such as Councils, mines or trade waste etc do not necessarily have to conform with these requirements, however, it will be the Envirolab Group's default policy that this procedure be used whenever possible.

2 DEFINITIONS

Duplicate

This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Blank

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware, instrument etc, can be determined by processing solvents, acids and reagents in exactly the same manner as for samples. Other terms cited in literature, but not used here include: Reagent Blank, Control Blank, Method Blank.

Matrix Spike

A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. Other terms cited in literature include Laboratory Fortified Matrix. It is suggested that the spiking concentration be near the middle of the working calibration range.

Surrogate Spike

Surrogates are known additions to each standard, sample, blank, matrix spike and LCS in a process batch, of compounds which are similar to the analyte of interest in terms of:

- a) extraction
- b) recovery through clean up procedures
- c) response to chromatography or other determinations

but which:

- d) are not expected to be found in real samples
- e) will not interfere with quantification of any analyte of interest
- f) may be separately and independently quantified

These are only applicable to organic testing.

Internal Standards

Internal standards are used to check the consistency of the analytical step (e.g. injections, retention times, potential instrument suppression/enhancement etc) and provide a reference against which results may be adjusted in case of variation. For many organic and metals analyses, internal standards are added after all extraction, cleanup and concentration steps, to each final extract solution/sample/standard.

LCS (Laboratory Control Sample)

This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. Other terms cited in literature include: laboratory control standard, quality control check sample, laboratory fortified blank.

Process Batch

A group of samples which behave similarly with respect to the sampling or the testing procedures being employed and which are processed as a unit for QC purposes. It is important that all factors within a process batch be the same. If any factors change e.g. reagents, staff, standards then a new process batch is deemed to have begun. A process batch is considered to be ≤ 20 samples.

Percent Recovery

Percent recovery describes the capability of the method to recover a known amount of analyte added to the sample.

% Recovery = C-A / B x 100

where: A = natural concentration of analyte in the sample

B = concentration of analyte added to the sample

C = concentration of analyte determined in the spiked sample

RPD (Relative Percent Difference)

This calculation measures the precision between two figures. Commonly used to compare the precision of Duplicate results.

% RPD = ((Highest – Lowest)/Average) x 100

3 QC REQUIRED AND WHAT IS REPORTED

The following QC is required for all Environmental Samples, unless justified otherwise by a Manager/Supervisor.

Blank

At least one per process batch. The Blanks must be labelled throughout the day e.g.: Bk_1 , Bk_2 etc. The Blank is analysed at a rate of one per <20 samples.

LCS

At least one per process batch. The LCS's must be labelled throughout the day e.g.: LCS_1, LCS_2 etc. The LCS is reported to all clients at a rate of one per \leq 20 samples.

Duplicate

At least one per ten samples i.e. a Duplicate is carried \leq 10 samples. So, if there is one process batch of 100 samples there will be at least 10 Duplicates. There are instances where there is insufficient sample for a duplicate analysis and hence the frequency will not apply, however, every effort will be made to perform a duplicate in each process batch (water volumes supplied for VOC and SVOC are often insufficient).

The Duplicate is only reported to the client if it is performed on their sample.

Matrix Spike

One for each soil/water/air sample (where applicable) type e.g.: if a batch contains soils/waters/air samples then a matrix spike must be done on each sample type at a frequency of 5%, typically a matrix spike is carried out where \geq 5 samples and then every 20.

The sample type is generally recorded on the Chain of Custody. If a client calls all samples 'soil' then we will treat all samples as 1 sample type (unless they are very obviously different). If there is only one sample type e.g. soil, then a matrix spike is performed every 20 samples.

There is no requirement in NEPM for a Matrix Spike Duplicate.

The Matrix Spike is only reported to the client if it is performed on their sample.

Certified/Standard Reference Materials

Where available, CRMs/SRMs are analysed (particularly during validation/verification). Due to the high cost and lack of stability of many CRMs/SRMs, the frequency of analysis is relatively low. Typically SRMs are run for Metals only (e.g. AGAL series 6, 10, 12 for example) as they are cost effective and stable over a long period of time. Therefore once a week or once a month is not uncommon.

4 ACCEPTANCE CRITERIA

If QC fails, take corrective action promptly to determine and eliminate the source of the error. Do not report data until the cause of the problem is identified and either corrected or qualified by a supervisor.

Matrix Spikes

As a general rule, the recoveries of most analytes spiked into samples should fall within the range 60% - 140% and this range should be used as a guide in evaluating in house performance, exceptions exist within individual methods. (*see tables 1-3 below for global acceptance criteria*).

Matrix Spikes will regularly fail, often due to matrix interferences. If a Matrix Spike fails it should be investigated:

a) check calculations and transcriptions to ensure a mistake has not been made.

b) look at the background concentration of the sample. If sample background is high then recovery can be affected (sample heterogeneity). A useful rule of thumb is where background concentration of an analyte is >3* the spike level then the spike recovery is n/a, however, where the sample is very non-homogenous acceptable spike recovery may be difficult. As long as the LCS is acceptable (*see below*) then the Process Batch will be accepted.

c) If the LCS has also failed then the Process Batch is deemed to have failed and data should not be reported unless justified. The batch should be repeated after consultation with the supervisor, possibly replacing standards or reagents (see guidelines below).

If a matrix spike has failed yet the process batch has been accepted by the supervisor, the failed

ENVIROLAB GROUP PROCEDURE – ELN-P05 QA/QC PROCEDURE v7 Page 4 of 11

matrix spike should still be reported to the client (unless the spiked sample has very high background levels). This should be accompanied by an appropriate comment such as 'percent recovery not available due to significant background levels of analyte in the sample' or 'the matrix spike recovery was outside recommended acceptance criteria, however, an acceptable recovery was achieved for the LCS. This indicates a sample matrix interference'.

Matrix spikes are not carried out for all tests. These exceptions are mainly the inorganic tests such as TSS, pH, EC etc. and OHS samples (tubes/badges/filters/swabs etc) where all the sample is extracted as opposed to a portion. In these cases an acceptable LCS is required.

Matrix spikes are also not reported for all analytes. For example in a SVOC run of >100 analytes it is acceptable to only spike a range of analytes e.g. some PAHs, some OCP, some OPP, some speciated Phenols etc.

Duplicates

Acceptable Duplicate data is judged by % RPD.

See tables 1-3 below for acceptance criteria, the acceptance criteria will increase as the analyte concentration approaches the PQL as measurement uncertainty will become a more significant factor.

If a water duplicate fails then repeat the analysis (if there is sufficient sample left). If the RPD% fails again it is likely to be due to a non-homogeneity or a matrix issue and an appropriate comment should be applied to the report such as 'the duplicate is outside acceptable %RPD, reanalysis indicates possible sample heterogeneity'. All failed duplicate results should be reported, a triplicate should be reported to illustrate analyte variability where applicable. *Poor reproducibility for water samples is rare unless the sediment loading is significant*.

If a soil duplicate fails then it should be repeated (if there is sufficient sample left). If the RPD% fails again it is likely to be due to a matrix non-homogeneity issue and an appropriate comment should be applied to the report such as 'the duplicate is outside acceptable %RPD, reanalysis indicates possible sample heterogeneity'. All failed duplicate results should be reported and a triplicate should be reported to illustrate analyte variability where applicable. Soil matrices are a common issue with poor analyte precision given samples are typically prepared field moist

If an air duplicate fails then it should be repeated (if there is sufficient sample left). Duplicates for air samples are only applicable for canister and air sample (tedlar) bag analyses, precision failures should be rare given the relative simplicity of the matrix, however variation will be higher near reporting limits (PQL).

Internal Standards

Acceptance criteria for internal standards are 70-130% for Metals and 50-150% for Organics, note exceptions may exist in individual methods – see tables 1 and 3 below.

If internal standards exceed this criteria they will need to be either re-vialed and re-run for organics or diluted and re-run for metals. If they continue to fail consult the supervisor.

Surrogates

Surrogate recoveries should generally be within the range of 60-140%, table 3 below.

High analyte concentrations may cause surrogates to fail – this needs to be annotated on the final report (e.g. for svTRH).

The surrogate recovery in BLKs and LCSs should be within Global Acceptance Criteria (GAC) or Analyte Specific Acceptance Criteria (ASAC) for labile surrogates (e.g. d5-phenol etc.). The GAC and ASAC are discussed in more detail below.

Certified/Standard Reference Materials

CRMs/SRM recoveries should generally be within the range of 70-130%. Some certified levels are below or within 10*PQL and therefore ±30% tolerance is not achievable on all instruments (e.g. some elements in AGAL12 will struggle with this criteria on ICP-OES but should be achieved on ICP-MS due to higher uncertainty based on PQL differences for the two instruments).

Global Acceptance Criteria (GAC) for Matrix Spikes, LCS and BLKS

The criteria specified below covers >90% of the analytes determined by the laboratory, however due to limitation of the methodology and/or the labile nature of some analytes there are analytes whose recovery is outside of this acceptance criteria (GAC). Therefore *Analyte Specific Acceptance Criteria* (ASAC) is applied for these analytes. The ASAC is determined from 6-12 months of LCS recovery data and is Defined as 3 x std dev from the mean LCS recovery %.

See GAC in the tables below.

	ICV	ссч	Internal Standards	LCS	PQL std	Calibration Blank	Matrix Spikes#	%RPD≥ 10*PQL [®]	5*PQL≥sample %RPD<10*PQL [®]	%RPD<5*PQL
Dissolved Waters	±10%	±20%	70-130%	±20%	±50%	<1/2*PQL std	±30%	20	50	any
Impingers	<mark>±10%</mark>	<mark>±20%</mark>	<mark>70-130%</mark>	<mark>±20%</mark>	<mark>±50%</mark>	<1/2*PQL std	<u>+30%</u>	<mark>30</mark>	50	any
Total Waters	±10%	±20%	70-130%	±20%	±50%	<1/2*PQL std	±30%	30	50	any
Soils/Paint/Filters (if cut in pieces)	±10%	±20%	70-130%	±30%	±50%	<1/2*PQL std	±30%	40	50	any

Table 1 – Metals GAC

n/a where background is $\geq 3^*$ spike level

@ where an original and duplicate result are above and below a cut off (5* and 10*PQL), then the mean of the two defines the criteria used.

Table 2 – Inorganics GAC

	ICV (LCS in many cases)	ссу	PQL std	Calibration Blank	LCS	Matrix Spikes#	%RPD <u>></u> 10*PQL [@]	5*PQL <u>></u> sample %RPD<10*PQL [®]	%RPD<5*PQL
Waters - Nutrients no preparation	±20%	±20%	±50%	<1/2*PQL std	±20%	±30%	20	50	any
Waters digested/distilled	±20%	±20%	±50%	<1/2*PQL std	±20%	±30%	30	50	any
Impingers	<mark>±20%</mark>	<mark>±20%</mark>	<mark>±50%</mark>	<1/2*PQL std	<mark>±20%</mark>	<mark>±30%</mark>	30	50	any
Soils/Filters (if cut in pieces)	±20%	±20%	±50%	<1/2*PQL std	±30%	±30%	30	50	any

n/a where background is \geq 3* spike level

@ where an original and duplicate result are above and below a cut off (5* and 10*PQL) then the average defines the criteria used.

Table 3 - Organics (includes Air Toxics unless specified in the method) GAC (TD tubes are an exception for field duplicates)

	ICV (LCS in many cases)	CCV*	Internal Stds	PQL std	Calibration Blank	LCS ^{\$}	Matrix Spikes# ^{\$} and Surrogates	%RPD <u>></u> 5*PQL (although sampling may be the source of error)	%RPD<5*PQL
Waters/Air Toxic - VOC	±20%	±20%	50-150%	±50%	n/a	±20%	±40%	30	any
Waters extracted	±20%	±20%	50-150%	±50%	n/a	±40%	±40%	50	any
Soils	±20%	±20%	50-150%	±50%	n/a	±40%	±40%	50	any

n/a where background is $\geq 3^*$ spike level

\$ - there will be exception to this rule as some analytes are particularly labile and recovery as low as 10% has been documented in the literature (see ASAC).

@ where an original and duplicate result are above and below a cut off (5* and 10*PQL) then the average defines the criteria used.

See MICRO/ASBESTOS and ASS methods for acceptance criteria in those sections.

Decision Path for LCS

As a general rule, the recoveries of most LCS's should fall within the ranges specified in the tables above.

If an LCS fails it should be investigated:-

a) check calculations and transcriptions to ensure a basic mistake has not been made.

b) If all other QC has passed, repeat the LCS analysis. If the LCS fails again it should be remade and re-analysed.

c) If the LCS fails after the second attempt there could be a problem with the LCS and hence the procedure – consult the supervisor.

If the failure is specific to the LCS then the Process Batch may be acceptable, if not, then repeat the process batch (if sufficient sample available). If insufficient sample is available then the data must be qualified with respect to the LCS result (for example a surrogate is half the expected value for all samples and LCS, this may be due to a setting on a pipette and is not reflective of poor extraction efficiency).

d) If the LCS fails the criteria in the GAC tables above, then compare to the ASAC for the individual analytes (i.e. 3 x stdev of LCS over 6-12 months). If within these criteria then the LCS is acceptable as long as above 10% recovery. Recovery below this limit implies the analytical method in not fit for purpose and hence the data must be qualified accordingly if reported.

There should be an LCS available for >99% of tests (exceptions include Asbestos for example).

Practical Quantitation Limit Checks (PQLs)

As can be seen from the tables above, a PQL standard run in the calibration or as a sample can be used to confirm the ability to determine the PQL on a sequence by sequence basis. This negates the need for MDL studies as the PQL is confirmed for each analytical sequence.

5 CHECKING THE CORRECTNESS OF ANALYSIS (see also form 346)

Anion Cation Balance

The anion and cation sums, when expressed as milliequivalents per litre, must approximately balance because all potable waters are electrically neutral.

As a minimum ion balance is determined from cations:-Na/Ca/Mg/K and anions:- Alk/Cl/SO₄.

The full calculation can be found in APHA and Form 213 - Mass Balance Calculation sheet can be used to determine the ion balance in Excel.

The acceptance criteria in APHA are very strict as they are based on potable water. The environmental waters we receive could rarely be termed potable so our % Difference has been determined to be $\pm 15\%$, with supervisor discretion.

If the % is >15% for "cation total Meq vs anion total Meq" then there is a possibility of gross error and reruns/checks may be necessary. If the result is confirmed then an appropriate comment must accompany the report such as 'the mass imbalance may be caused by other ions that have not been measured'. Extremes of pH can also cause an imbalance.

TDS v lons

Measured TDS should be similar or greater than ion calculated TDS. This is because the calculation will normally not involve ions such as F, Si, NO₃ etc.

Note, as a guide in mg/L:-

 $0.6(alk) + Cl + SO_4 + Na + Ca + Mg + K + = Approx TDS.$

Measured EC and Ion sums

Both the anion & cation sums (expressed as meq) should be 1/100 of the measured EC value. If either of the 2 sums does not meet this criteria, that sum is suspect.

The calculation is: 100 x anion (or cation sum) meq/L = (0.9-1.1 EC).

The full calculation can be found in APHA or use the spreadsheet i.e. Form 213 - Mass Balance Calculation sheet v1. Note another useful rule of thumb is that Chloride (mg/L) is $^{1}/_{3}$ of EC.

Measured TDS to EC Ratio

EC x (0.55-0.7) = TDS.

If it is outside this criteria one of the tests may be suspect. The exception is waters with high colloidal particulates that may contribute to a higher measured TDS result.

Metals – Total Recoverable v Dissolved.

In theory Total recoverable metals must be equal or higher than dissolved metals for the same water sample. If the difference is within the uncertainty of the individual tests then this should be noted on the worksheets. If the difference is outside the uncertainty of the individual tests then one of the results is suspect and should be re-analysed for confirmation/denial.

Metals – CrVI vs total dissolved Cr and Fell vs total dissolved Fe

The sample preservation for hexavalent Chromium, Ferrous Iron and the total dissolved Chromium and Iron are from different preservations. Hence different bottles are used during sampling which can lead to variations in results given:-

 $Cr^{VI} \leq$ total dissolved Cr and Fe^{II} \leq total dissolved Fe (taking into account some MU in analysis)

A common source of error is where samples for Cr^{VI} and Fe^{II} are not field filtered (into caustic and HCI preserved containers respectively), whereas the total dissolved metals are field filtered into HNO₃ preserved bottles. Therefore interaction with sediment can lead to higher Cr^{VI} and Fe^{II} numbers than would be given if filtered. Therefore, where this occurs a note should be recorded on the report and/or communicated to the customer/sampler.

Organics

Some simple checks to be aware of include:

 C_6 - C_{10} should generally be greater than BTEX.

 $>C_{10}$ - C_{36} should generally be greater than PAH.

Naphthalene in the VOC run should be similar to PAH (SVOC) run, however where the soil is non-homogenous then poor precision may exist. Additionally two different solvent mixes are used which can lead to variability in extraction efficiency.

Nutrients

TKN should be greater than or equal to Ammonia. If the difference is within the uncertainty of the individual tests then this should noted on the worksheets. If the difference is outside the uncertainty of the individual tests then one of the results is suspect and should be reanalysed for confirmation/denial. Use of different bottle for TKN and Ammonia can cause anomalies do to sampling variability.

See form 346 for more detail on checking correctness of data.

6 CONTROL CHARTS

Control Charts can be generated from LIMS as required. LCS data is used to construct these charts. LCS data is a good indication of the health of the method.

Matrix spike and duplicate data can vary significantly due to the nature of certain matrices so are not considered an ideal measure. If a MS result is grossly out due to a known interference then control data will be invalidated as the result is an outlier.

Control charts can used to monitor trends and should alert the analyst to potential problems. In theory all plotted data should lie within 2SD (Warning Limits =WL) of the mean or within the target recovery (e.g. GAC and ASAC recovery limits discussed above).

Results outside the CL or outside the target recovery (e.g. GAC and ASAC recovery limits discussed above) should not be accepted unless there is a valid, documented reason.

7 STANDARDS / CALIBRATIONS

Calibration standards are purchased either in commercial mixes that are traceable to NIST (wherever possible with CoAs) and/or as neat compounds/salts. Where possible, purity of neat compounds/salts is >>95% (as high as available but still cost effective). Standards used for calibration are prepared (working standards) as required and allocated a shelf life in accordance with the methods (in house and via international standards) and in consultation with approved suppliers and senior staff experience.

Calibration standards are verified by an independently sourced standard (where available) as described within individual methods. Standards that are used beyond the specified shelf-life (e.g. the default shelf-life for many commercial standards) must be verified by a standard that is within the specified shelf-life.

Note, inorganic salts with purity >>95% (>99% preferable) typically have a shelf life >10 years (the shelf life is typically not specified by the supplier). The standards from such salts are checked versus other sources of analyte regardless, for example a working standard from a NaNO₃ salt (as a Nitrate source) could be confirmed as acceptable for use by checking versus a working standard prepared from a KNO₃ salt (or a commercial mix of NO₃ where a CoA is supplied).

Calibration

In general calibrations are linear or linear through zero (i.e. through the blank). Exceptions to this rule occur where the chemistry is non-linear (e.g. some colourimetric chemistry) and quadratic fits can be used. Another example would be for labile Organic analytes where, for example, breakdown and/or adsorption effects become significant, therefore quadratic fits become necessary.

Calibration curves are constructed for each daily sequence for most instrumentation, the

exceptions would be for some colourimetric chemistries where the reagents are very stable (e.g. $NH_3/NO_3/PO_4/CrVI/TKN$) and also for some GC-MS/ECD analyses where acceptable response is maintained for all analytes (can be confirmed with PQL standard analyses and S/N observation). To confirm the validity of the calibration curves an Independent Calibration Check (ICV) is run with a tolerance of ±20% of expected result (as described below).

For most methods an Independent Calibration Check (ICC or ICV where V = verification) is analysed straight after the calibration. This should be an independent check (i.e. made from another standard source) and acceptance is defined in the tables 1-3 in section 4 above. If it is outside this acceptance criteria, a new calibration may be necessary and/or calibration standards should be re-prepared and/or the Independent Calibration Check should be re-prepared.

Results may only be reported if within the calibration range (exceptions include ICPOES/IC/FID where linearity way beyond the top standard has been demonstrated in validation data). Results +10% beyond the top standard are acceptable in general where linear calibrations are used, *not* where quadratics are used.

The correlation coefficient (R^2) should be >0.995 for the vast majority of analytes (individual methods may have specific criteria). Where failures occurs, calibration points may be removed as a last resort (e.g. for a poor injection where internal standards are indicative) and should be a rarity as opposed to normal practice. In general 3-5 calibration standards are used to generate a response curve and/or a Continuing Calibration Verification (CCV) standard is run to ensure signal to noise is maintained.

Continuing Calibration

A continuing calibration is analysed approximately every 20 samples and at the end of the run. Acceptance should be $\pm 20\%$. If it is outside this acceptance a new calibration will be necessary (the ability to maintain the detection limit (PQL) is a requirement i.e. run the PQL standard as described above with the required acceptance criteria (tables 1-3)).

New v's Old Standard Checks

New standards should always be compared to the old with an acceptance of $\pm 10\%$.

Expired Standards

Standards that have expired may still be used, however, need to be verified against another in date standard, CRM or confirmed by another lab. The expiry date may then be extended a further 6 months (or less as deemed appropriate). For some analytes, such as metals, extending the expiry date for many years may be acceptable as there is known stability.

8 Intralaboratory Check Samples

Soils –

Internally prepared reference materials can be used to check the validity of analysis. Typically for soil, customer samples are collated and are then air dried, homogenised and sieved. The analyte concentrations are then determined by analysing 7-10 replicates to achieve a mean with an RSD% \leq 30% (although concentration dependant). The results can then be internally (Melbourne \leftrightarrow Perth \leftrightarrow Sydney lab) verified and/or externally verified with another NATA accredited facility.

Once an acceptable mean and acceptance criteria has been established (professional judgement of the senior chemists can be utilised here), then the material can then be analysed periodically to check laboratory performance. Alternatively, if available, confirm against a CRM/SRM.

Other non-certified reference materials can be used to assess laboratory performance if suitably verified data has been generated (e.g. ELIG soil where 10 labs participated in generating data).

Waters -

The R&D Manager or delegate will periodically prepare QC samples for an ILCP between the labs in the Envirolab Group. Samples may be prepared from standard solutions, independant check solutions and/or solutions remaining from previous proficiency programs (stability may have to be ascertained. These solutions will generally be of known concentration.

Spike solutions using products may also be prepared for comparison purposes e.g. petrol for TRH/BTEX or Diesel for PAHs etc.

Table QC1 - Containe	Table QC1 - Containers, Preservation Requirements and Holding Times - Soil							
Parameter	Container Preservation		Maximum Holding Time					
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months					
Mercury	Glass with Teflon Lid	Nil	28 days					
TPH / BTEX / VOC / SVOC / CHC	Glass with 4°C, zero Teflon Lid headspace		14 days					
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days					
Phenols	Glass with Teflon Lid	4°C ¹	14 days					
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days					
Asbestos	Sealed Plastic Bag	Nil	N/A					

Table QC2 - Containers, Preservation Requirements and Holding Times - Water						
Parameter	Container Volume (mL) Preservation		Maximum Holding Time			
Heavy Metals	60mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months			
Mercury	60mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months 2 8 days			
Cyanide	125mL Amber Glass or 125mL Opaque HDPE	pH > 12 NaOH / 4°C	6 months 14 days			
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 44mL Glass	HCI / 4°C ¹ or Sodium Bisulphate	14 days			
TPH (C10- C40) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4ºC ¹	28 days (TDS is 7 days, pH is ideally a field test and should be analysed ASAP)			

Notes: 1 = Extraction within 14 days, Analysis within 40 days.

Parameter	Unit PQL Method Reference			
	-	Meta	als in Soil	
Arsenic - As ¹	mg / kg	4	USEPA 200.7 (also reference USEPA 6010C and 3050)	
Cadmium - Cd ¹	mg / kg	0.4	USEPA 200.7 (also reference USEPA 6010C and 3050)	
Chromium - Cr ¹	mg / kg	1	USEPA 200.7 (also reference USEPA 6010C and 3050)	
Copper - Cu ¹	mg / kg	1	USEPA 200.7 (also reference USEPA 6010C and 3050)	
₋ead - Pb ¹	mg / kg	1	USEPA 200.7 (also reference USEPA 6010C and 3050)	
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A (also reference USEPA 3050)	
Nickel - Ni ¹	mg / kg	1	USEPA 200.7 (also reference USEPA 6010C and 3050)	
Zinc - Zn ¹	mg / kg	1	USEPA 200.7 (also reference USEPA 6010C and 3050)	
	Tota	al Petroleum Hyd	frocarbons (TRHs) in Soil	
old fractions				
C ₆ -C ₉ fraction	mg / kg	25	USEPA 8260	
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000	
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000	
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000	
NEPM 2013 Fractions		•		
C_6 - C_{10} fraction	mg / kg	25	USEPA 8260	
-C ₁₀ -C ₁₆ fraction	mg / kg	50	USEPA 8000	
>C ₁₆ -C ₃₄ fraction	mg / kg	100	USEPA 8000	
>C ₃₄ -C ₄₀ fraction	mg / kg	100	USEPA 8000	
01 10		BTE	EX in Soil	
Benzene	mg / kg	0.2	USEPA 8260	
Toluene	mg / kg	0.5	USEPA 8260	
Ethylbenzene	mg / kg	0.5	USEPA 8260	
m & p Xylene	mg / kg	1	USEPA 8260	
p- Xylene	mg / kg	0.5	USEPA 8260	
		Other Organic	Contaminants in Soil	
PAHs	mg / kg	0.05-0.2	USEPA 8270	
CHCs	mg / kg	1	USEPA 8260	
/OCs	mg / kg	1	USEPA 8260	
SVOCs	mg / kg	1	USEPA 8260	
DCPs	mg / kg	0.1	USEPA 8140, 8080	
OPPs	mg / kg	0.1	USEPA 8140, 8080	
PCBs	mg / kg	0.1	USEPA 8080	
Phenolics	mg / kg	5	APHA 5530	
		As	sbestos	
		Presence /		

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method		
Не	avy Meta	ls		Chlorinated Hydrocarbons (CHCs)					
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260C		
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260C		
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260C		
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260C		
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260C		
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260C		
Copper - Cu	μg/L	1	USEPA 200.8	1,1,2-trichloroethane	μg/L	1	USEPA 8260C		
_ead - Pb	μg/L	1	USEPA 200.8	Hexachloroethane	μg/L	10	USEPA 8270D		
Mercury - Hg	μg/L	0.05	USEPA 7471A	Other CHCs	μg/L	1	USEPA 8260C		
Molybdenum - Mo	μg/L	1	USEPA 200.8	Semi-Vola		anic Co	mpounds (SVOCs)		
Nickel - Ni	μg/L	1	USEPA 200.8	Aniline	μg/L	10	USEPA 8270D		
Selenium - Se	μg/L	1	USEPA 200.8	2,4-dichloroaniline	μg/L	10	USEPA 8270D		
Silver - Ag	μg/L	1	USEPA 200.8	3,4-dichloroaniline	μg/L	10	USEPA 8270D		
Гіп (inorg.) - Sn (all forms)	μg/L	1	USEPA 200.8	Nitrobenzene	μg/L	10	USEPA 8270D		
Nickel - Ni	μg/L	1	USEPA 200.8	2,4-dinitrotoluene	μg/L	10	USEPA 8270D		
Zinc - Zn	μg/L	1	USEPA 200.8	2,4,6-trinitrotoluene	μg/L	10	USEPA 8270D		
Total Petroleun						lic Com			
C_6 - C_9 fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8270D		
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8270D		
C_{15} - C_{28} fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8270D		
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8270D		
NEPM 2013				2,4,6-trichlorophenol	μg/L	10	USEPA 8270D		
C ₆ -C ₁₀ fraction	μg/L	10	USEPA 8220A / 8000	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8270D		
>C ₁₀ -C ₁₆ fraction	μg/L	50	USEPA 8000	Pentachlorophenol	μg/L	10	USEPA 8270D		
C ₁₆ -C ₃₄ fraction	μg/L	100	USEPA 8000	2,4-dinitrophenol	μg/L	100	USEPA 8270D		
C ₃₄ -C ₄₀ fraction	μg/L	100	USEPA 8000		liscella	neous Pa	arameters		
BTEX				Total Cyanide	μg/L	4	APHA 4500C&E-CN		
Benzene	μg/L	1	USEPA 8260	Fluoride	μg/L	100	APHA 4500 F-C		
Foluene	μg/L	1	USEPA 8260	Salinity (TDS)	mg/L	5	APHA 2510		
Ethylbenzene	μg/L	1	USEPA 8260	рН	units	0.1	APHA 4500H+		
n- & p-Xylene	μg/L	2	USEPA 8260		sphate P	esticide	s (OPPs) Trace Level		
o-Xylene	μg/L	1	USEPA 8260	Azinphos Methyl	μg/L	0.01	USEPA 8082A/8270D		
Polyciclic Aroma			1 1	Chloropyrifos	μg/L	0.01	USEPA 8082A/8270D		
PAHs Level 2	μg/L	0.1	USEPA 8270	Diazinon Dimethoate	μg/L	0.01	USEPA 8082A/8270D		
Benzo(a)pyrene Level 3 OrganoChlorine Pe	μg/L	0.01	USEPA 8270	Fenitrothion	μg/L	0.01	USEPA 8082A/8270D		
	-	0.001	USEPA 8082A		μg/L	0.01	USEPA 8082A/8270D USEPA 8082A/8270D		
Aldrin Chlordane	μg/L	0.001	USEPA 8082A USEPA 8082A	Malathion Parathion	μg/L	0.01	USEPA 8082A/8270D		
DDT	μg/L μg/L	0.001	USEPA 8082A	Temephos	μg/L μg/L	0.01	USEPA 8082A/8270D		
Dieldrin	μg/L	0.001	USEPA 8082A				(PCBs) Trace Level		
Endosulfan	μg/L	0.001	USEPA 8082A	Individual PCBs	μg/L	0.01	USEPA 8082A/8270D		
Endrin	μg/L	0.001	USEPA 8082A		µy/∟	0.01			
Heptachlor	μg/L	0.001	USEPA 8082A	1					
₋indane	μg/L	0.001	USEPA 8082A						
Foxaphene	μg/L	0.001	USEPA 8082A						
				J					

QC Sample Type	Method of Assessment	Acceptable Range
	Field QC	
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \times \frac{ X_1 - X_2 }{mean (X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL)
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>
Laboratory prepared Trip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%
	Laboratory QC	
Laboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	The acceptable range depends upon the levels detected: - Any RPD (when the average concentration is <5 times the PQL) - 0-50% RPD (when the average concentration is >5 times the PQL
Surrogates Matrix Spikes Laboratory Control Samples	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample. % Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	60-140% (General Analytes) 70-130% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)
Method Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>